Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Режимы разработки газовых и газоконденсатных залежей.
Газовое или газоконденсатное месторождение представляет собой сложную систему, состоящую из большого числа элементов (скважины, установки комплексной подготовки газа, трубопроводы и т.п.), взаимодействующих между собой и с внешней средой на разных уровнях, причем зачастую это взаимодействие носит неопределенный характер. Эти элементы (объекты) обычно многофункциональны (например, установка комплексной подготовки газа); связи являются переменными, обеспечивающими многорежимное функционирование; управление объектами носит иерархический характер, предусматривающий сочетание централизованного управления или контроля с автономностью. Перечисленные свойства являются отличительными особенностями сложных или больших систем; при этом их проектирование, анализ, исследование и управление возможны лишь на основе системного подхода. Л. Заде сформулировал «принцип целостности», согласно которому большие системы нельзя изучать точно, на основе единой модели. Зависимости между элементами большой системы являются разнообразными, сложными и не всегда определенными, в результате чего построение единой модели затруднительно или вообще невозможно. В связи с этим при моделировании больших систем используют многоуровневое (иерархическое) описание, причем иерархическая структура системы не остается фиксированной, а определяется конкретными целями и задачами исследования. Так, с одной стороны, скважина и призабойная зона пласта при рассмотрении эксплуатационных задач являются основными элементами, а пласт выполняет функцию внешнего источника. С другой стороны, изучая процесс обводнения залежи, за основной элемент принимают пласт с комплексом свойств (неоднородность, расчлененность и т.д.), а скважины имеют второстепенное значение, выполняя впервую очередь функции индикаторов процессов. В газовых и газоконденсатных залежах источниками энергии являются давление, под которым находится газ в пласте, и напор краевых пластовых вод. Соответственно различают газовый и упруговодогазонапорный режимы. Природный режим залежи определяется главным образом геологическими факторами: характеристикой водонапорной системы, к которой принадлежит залежь, и расположением залежи в этой системе относительно области питания; геолого-физической характеристикой залежи — термобарическими условиями, фазовым состоянием УВ, условиями залегания и свойствами пород-коллекторов и другими факторами; степенью гидродинамической связи залежи с водонапорной системой. На режим пласта существенное влияние могут оказывать условия эксплуатации залежей. При использовании для разработки залежи природных видов энергии от режима зависят интенсивность падения пластового давления и, следовательно, энергетический запас залежи на каждом этапе разработки, а также поведение подвижных границ залежи (ГНК, ГВК, ВНК) и соответствующие тенденции изменения ее объема по мере отбора запасов нефти и газа. Все это необходимо учитывать при выборе плотности сети и расположения скважин, установлении их дебита, выборе интервалов перфорации, а также при обосновании рационального комплекса и объема геолого-промысловых исследований для контроля за разработкой. Природный режим при его использовании обусловливает эффективность разработки залежи — темпы годовой добычи нефти (газа), динамику других важных показателей разработки, возможную степень конечного извлечения запасов нефти (газа) из недр. Продолжительность эксплуатации скважин различными способами, выбор схемы промыслового обустройства месторождения и характеристика технологических установок по подготовке нефти и газа также во многом зависят от режима залежи. Знание природного режима позволяет решить один из центральных вопросов обоснования рациональной системы разработки нефтяных и газоконденсатных залежей: возможно ли применение системы с использованием природных энергетических ресурсов залежи или необходимо искусственное воздействие на залежь? Режим залежи при ее эксплуатации хорошо характеризуется кривыми, отражающими в целом по залежи поведение пластового давления, динамику годовой добычи нефти (газа) и воды, промыслового газового фактора. Все эти кривые в совокупности с другими данными об изменении фонда скважин, среднего дебита на одну скважину и т.д. представляют собой график разработки залежи. Газовый режим При газовом режиме (режиме расширяющегося газа) приток газа к забоям скважин обеспечивается за счет потенциальной энергии давления, под которым находится газ в продуктивном пласте. Ее запас обычно оказывается достаточным для довольно полной выработки залежи (сжимаемость газа на три порядка более сжимаемости воды и породы). Режим формируется при отсутствии влияния законтурной области и может иметь место в условиях как инфильтрационной, так и элизионной водонапорной системы. При газовом режиме в процессе разработки залежи объем залежи практически не меняется. Некоторое уменьшение пустотного пространства залежи может происходить вследствие деформации пород-коллекторов или выпадения конденсата в пласте в результате снижения пластового давления. Пластовое давление залежи рпл в процессе ее разработки непрерывно снижается. Для газового режима характерен прямолинейный характер зависимости (pnл/Z) — ∑ Q, где Z — коэффициент сверхсжимаемости газа; ∑ Q — накопленная с начала эксплуатации добыча газа. Таким образом, удельная добыча газа на 0, 1 МПа снижения пластового давления при газовом режиме обычно постоянна на протяжении всего периода разработки. Эта особенность широко используется для подсчета оставшихся в залежи запасов газа по данным истекшего периода разработки. Следует отметить, что по газоконденсатным залежам зависимость пластового давления от добытого количества газа может отличаться от прямолинейной. Режим обеспечивает достаточно высокие темпы добычи газа — по крупным залежам в период максимальной добычи до 8—10% начальных запасов в год и более. Значительного поступления попутной воды в скважины обычно не происходит. Однако иногда, несмотря на неподвижность ГВК, в часть скважин поступает некоторое количество воды, что может быть связано с перемещением ее из водоносной части пласта по трещинам или по тонким высокопроницаемым прослоям, из водосодержащих линз, прослоев или каверн, имеющихся в объеме самой залежи, и с другими причинами. Выявление источника и путей поступления воды в скважины в таких случаях требует проведения специальных геолого-промысловых исследований. Значения коэффициента извлечения газа при газовом режиме обычно высокие — 0, 9 — 0, 97. Газовый режим характерен для многих крупных газовых месторождений нашей страны. Упруговодогазонапорный режим Упруговодогазонапорный режим — режим, при котором в процессе разработки залежи отмечается подъем ГВК, т.е. происходит внедрение в залежь краевой воды. При этом режиме напор краевой воды всегда сочетается с действием упругих сил газа. Масштабы внедрения в залежь воды принято оценивать коэффициентом возмещения, который равен отношению объема воды, внедрившейся в залежь за определенный период времени, к объему газа в пластовых условиях, отобранному из залежи за этот же период. Так, при внедрении в залежь 0, 2 млн. м3 воды в результате отбора 1 млн. м3 газа в пластовых условиях (при пластовом давлении 10 МПа на поверхности это составит около 100 млн. м3 газа) коэффициент возмещения будет равен 0, 2. Повышенные его значения указывают на большую роль водонапорной составляющей режима. При этом режиме при прочих равных условиях пластовое давление снижается медленнее, чем при газовом. Интенсивность падения давления возрастает при невысокой активности законтурной области (при приуроченности залежи к элизионной водонапорной системе, при пониженной проницаемости коллекторов и др.), с увеличением темпов добычи газа и под влиянием других причин. Действие упруговодогазонапорного режима сопровождается постепенным обводнением части скважин, в связи с чем они рано (в то время, когда залежь еще имеет высокое пластовое давление) выходят из эксплуатации. Возникает необходимость бурения вместо них дополнительных скважин. Вследствие неоднородности продуктивных отложений и неравномерности отбора газа из прослоев с разной проницаемостью происходит опережающее продвижение воды в глубь залежи по наиболее проницаемым прослоям. Это приводит к появлению воды в продукции скважин, усложнению условий их эксплуатации и раннему отключению. В итоге коэффициенты извлечения газа часто бывают меньшими, чем при газовом режиме, диапазон их значений может быть весьма широким — от 0, 5 до 0, 95 в зависимости от степени неоднородности продуктивных пластов. От темпов продвижения контурной или подошвенной воды зависит темп падения пластового давления. Темп падения пластового давления непосредственно обуславливает падение дебитов газовых скважин, а следовательно, число скважин, необходимых для обеспечения запланированного отбора газа из месторождения. Темп падения пластового давления определяет продолжительность периодов бескомпрессорной и компрессорной эксплуатации, постоянной и падающей добычи газа, эффективной работы промысловых установок искусственного холода, дожимной компрессорной станции. Проявление водонапорного режима иногда благоприятно сказывается на этих показателях разработки месторождения и обустройства промысла. Однако в результате продвижения воды в газовую залежь чаще приходится сталкиваться с рядом негативных последствий. Вследствие изменчивости коллекторских свойств продуктивных отложений по площади газоносности, а также неравномерного распределения отборов газа по скважинам они преждевременно обводняются. Неоднородность продуктивных отложений по толщине и неравномерность их дренирования по разрезу приводит к продвижению воды по наиболее проницаемым и дренируемым прослоям, пропласткам, что также вызывает преждевременное обводнение скважин. В результате ухудшаются технико-экономические показатели разработки месторождения. Приходится идти на дополнительные капиталовложения для добуривания новых скважин. Отметим, что в условиях водонапорного режима процесс обводнения газовых скважин и месторождений – естественный процесс. Однако при проектировании и осуществлении разработки месторождения природного газа следует предусматривать такое число добывающих скважин, такое размещение их на площади газоносности и структуре и соответствующие технологические режимы эксплуатации, систему обустройства газового промысла, коэффициент газоотдачи, которые обеспечивали бы наибольшую народнохозяйственную эффективность. Система обустройства газового промысла в случае проявления водонапорного режима усложняется, так как необходимо предусматривать отделение от газа воды, утилизацию ее путем сброса в специальные скважины. Таким образом, третье отрицательное последствие проявления водонапорного режима связано с осложнениями, возникающими при эксплуатации скважин и системы обустройства промысла. На практике режим месторождения природного газа определяется следующим образом. Промысловые данные об изменении пластового давления р(t) и добытом количестве газа Qдоб(t) обрабатываются в координатах p/z(p) – Qдоб(t). Если в указанных координатах фактические данные ложатся на прямую, это указывает на проявление газового режима. 20. Что понимается под объектом разработки. это искусственно выделенное в пределах разрабатываемого месторождения геологическое образование (пласт, массив, структура, совокупность пластов), содержащее промышленные запасы углеводородов, извлечение которых из недр осуществляется при помощи определенной группы скважин
6 3 5 19 Образование гидратов природных газов. Состав и свойства гидратов. Газовые гидраты (также гидраты природных газов или клатраты) — кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Основным условие для образования гидратов являются снижение температуры и повышение давления и наличие влаги. На их образование влияет состав газа. Сероводород и углекислый газ способствует образованию гидратов особенно сероводород, даже при незначительном содержании сероводорода повышается температура гидратообразования. Азот, углеводороды тяжелее бутана, а также минерализированная пластовая вода ухудшают условия образования гидратов. Природные газы в определенных термодинамических условиях вступают в соединение с водой, образуя гидраты, которые, скапливаясь в промысловых и магистральных газопроводах, существенно увеличивают их гидравлическое сопротивление и, следовательно, снижают пропускную способность. Низкие пластовые температуры и суровые климатические условия этих районов создают благоприятные условия для образования гидратов в скважинах и газопроводах. Гидраты представляют собой соединения молекулярного типа, возникающие за счет действия ван-дер-ваальсовых сил притяжения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом полости между молекулами воды полностью или частично заполняются молекулами газа. Гидраты природных газов представляют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду — это белая кристаллическая масса, похожая на снег или лед. Если природные газы содержат кислые примеси, то процесс гидратообразования ускоряется. Процесс гидратообразования обычно происходит на границе газ — вода при условии полного насыщения природного газа водой. Для прогнозирования места образования и интенсивности накопления гидратов в системах газоснабжения необходимо знать изменение влажности газа в различных термодинамических условиях. |
Последнее изменение этой страницы: 2017-05-11; Просмотров: 1176; Нарушение авторского права страницы