Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Газовые, газоконденсатные, нефтегазоконденсатные и газогидратные залежи.



Площади газоносности газовых залежей в плане могут иметь различную форму: удлиненного овала с отношением продольной и поперечной осей более 10, овала, круга, прямоугольника или фигуры произвольной формы.

Территории промыслов различаются рельефом, грунтом, застройками различного назначения. Газоносный коллектор в общем случае характеризуется изменчивостью литологического состава и геолого-физических параметров по площади и разрезу. Эти причины в сочетании с требованиями экономики обуславливают различные способы размещения эксплуатационный нагнетательных и наблюдательных скважин на структуре и площади газоносности.

При разработке газовых и газоконденсатных месторождений широко применяют следующие системы размещения эксплуатационных скважин по площади газоносности: равномерное по квадратной или треугольной сетке, батарейное; линейное по “цепочке”; в сводовой части залежи; неравномерное.

Равномерная сетка скважин обеспечивает равномерное падение пластового давления. Дебиты скважин в данном случае обусловливаются средним пластовым давлением по залежи в целом. Таким образом, при равномерном размещении скважин темп снижения средневзвешенного по объему порового пространства приведенного давления р/z в удельном объеме дренирования равен темпу снижения приведенного давления в залежи в целом.

Недостаток равномерной системы расположения скважин - увеличение протяженности промысловых коммуникаций и газосборных сетей.

При батарейном размещении скважин образуется местная воронка депрессии, что значительно сокращает период бескомпрессорной эксплуатации месторождения и срок использования естественной энергии пласта для низкотемпературной сепарации газа. С другой стороны, в этом случае сокращается протяженность газосборных сетей и промысловых коммуникаций. Линейное расположение скважин по площади газоносности обусловливается, как правило, геометрией залежи. Оно обладает теми же преимуществами и недостатками, что и батарейное.

На практике газовые и газоконденсатные залежи разрабатываются, как правило, при неравномерном расположении скважин по площади газоносности. При неравномерном размещении скважин на площади газоносности темпы изменения средневзвешенного приведенного давления в удельных объемах дренирования скважин и всей залежи различны. В этом случае возможно образование глубоких депрессионных воронок давления в отдельных объемах залежи.

Преимущество неравномерного размещения скважин на площади газоносности по сравнению с равномерным уменьшение капитальных вложений в строительство скважин, сроков строительства скважин, общей протяженности промысловых дорог, сборных газо-и конденсатопроводов, ингибиторопроводов,. водопроводов, линий связи и электропередач.

Наблюдательные скважины (примерно 10 % эксплуатационных) бурят, как правило, в местах наименьшей геологической изученности залежи, вблизи мест тектонических нарушение в водоносной зоне около начального газоводяного контакта в районах расположения скважин, эксплуатирующих одновременно несколько пластов, в центре кустов при батарейно-кустовом размещении скважин. Они позволяют получать разнообразную информацию о конкретных свойствах пласта; изменении давления; температуры и состава газа; перемещении газоводяного контакта; газо-, водо- и конденсатонасыщенности пласта; направлении и скорости перемещения газа в пласте.

 

При разработке газоконденсатных залежей с поддержанием пластового давления размещение нагнетательных и эксплуатационных скважин на структуре и площади газоносности зависит от рабочего агента, закачиваемого в пласт для поддержании давления, геометрической формы площади газоносности в плане и коллекторских свойств залежи.

При закачке в пласт газообразного рабочего агента (как правило, сухого газа) нагнетательные скважины размещают в виде батарей в приподнятой, купольной части залежи, эксплуатационные - также в виде батарей, но в пониженной части, на погружении складки. При закачке в пласт жидкого рабочего агента (как правило, воды) нагнетательные скважины размещают в пониженной части залежи, а эксплуатационные - в повышенной, купольной.

При таком размещении скважин на структуре увеличивается коэффициент охвата вытеснением пластового газа рабочим агентом за счет различия вязкостей и плотностей пластового газа и закачиваемого рабочего агента.

Нагнетательные и эксплуатационные скважины при разработке залежей с поддержанием давления размещаются на площади газоносности в виде кольцевых или лилейных цепочек скважин. Обычно расстояние между нагнетательными скважинами принимают 800 - 1200 м, а между добывающими 400 - 800 м.

Разработку газоконденсатных месторождений следует вести при постоянном числе нагнетательных и добывающих скважин.

 

5. Что такое относительная фазовая проницаемость? отношение эффективной проницаемостик некоторой базовой проницаемости (чаще всего к абсолютной)


 

6 2 7 4

Образование гидратов природных газов. Состав и свойства гидратов.

Газовые гидраты (также гидраты природных газов или клатраты) — кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Основным условие для образования гидратов являются снижение температуры и повышение давления и наличие влаги. На их образование влияет состав газа. Сероводород и углекислый газ способствует образованию гидратов особенно сероводород, даже при незначительном содержании сероводорода повышается температура гидратообразования. Азот, углеводороды тяжелее бутана, а также минерализированная пластовая вода ухудшают условия образования гидратов.

Природные газы в определенных термодинамических ус­ловиях вступают в соединение с водой, образуя гидраты, которые, скапливаясь в промысловых и магистральных газо­проводах, существенно увеличивают их гидравлическое со­противление и, следовательно, снижают пропускную способ­ность. Низкие пластовые темпера­туры и суровые климатические условия этих районов созда­ют благоприятные условия для образования гидратов в сква­жинах и газопроводах.

Гидраты представляют собой соединения молекулярного типа, возникающие за счет действия ван-дер-ваальсовых сил притя­жения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом поло­сти между молекулами воды полностью или частично заполня­ются молекулами газа. Гидраты природных газов представля­ют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду — это белая кристаллическая масса, похожая на снег или лед. Если природные газы содержат кислые примеси, то процесс гидратообразования ускоряется.

Процесс гидратообразования обычно происходит на гра­нице газ — вода при условии полного насыщения природно­го газа водой. Для прогнозирования места образования и интенсивности накопления гидратов в системах газоснабже­ния необходимо знать изменение влажности газа в различ­ных термодинамических условиях.

Абсорбционная осушка газа.

Применяется для извлечения из газа водяных паров и тяжелых углево­дородов. Для осушки газа в качестве абсорбента используются гликоли, а для извлечения тяжелых углеводородов - углеводородные жидкости. Аб­сорбенты, применяемые для осушки газа, должны обладать высокой взаи­морастворимостью с водой, простотой и стабильностью при регенерации, низкой вязкостью при температуре контанта, низкой коррозионной спо­собностью, не образовывать пен или эмульсий. На современных промыслах чаще применяют диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ).

Преимущество ДЭГа перед ТЭГом - меньшая склонность к ценообра­зованию при содержании в газе конденсата. Кроме того, ДЭГ обеспечивает лучшее разделение системы вода - углеводороды. Однако ТЭГ обеспечива­ет высокую степень осушки, что приводит к большому снижению " точки росы". ТЭГ имеет более высокую температуру разложения. Следовательно, ТЭГ можно нагревать до более высокой температуры и регенерацию (восстановление) его проводить без вакуума.

Чем выше концентрация подаваемого гликоля, тем глубже степень осушки. Концентрация гликоля зависит от эффективности его регенерации. При атмосферном давлении ДЭГ можно регенерировать до 96, 7%, а ТЭГ-до 98, 1%. Гликоли в чистом виде не вызывают коррозии углеродистых ста­лей.

Процесс абсорбции осуществляется в вертикальном цилиндрическом сосуде-абсорбере. Газ и абсорбент контактируют на тарелках, смонтиро­ванных внутри аппарата, перемещаясь противотоком: газ поднимается снизу вверх, а абсорбент стекает сверху вниз. Абсорбент по мере своего движения насыщается поглощаемыми им компонентами или влагой и через низ колонны подается на регенерацию. С верха колонны уходит осу­шенный газ. Эффективность абсорбции зависит от температуры и давле­ния, числа тарелок в абсорбере, количества и качества абсорбента. Увели­чение числа тарелок (а их устанавливают в абсорбере 14-18 шт.) оказывает такое же влияние, как и увеличение количества циркулирующего абсор­бента. Верхний и нижний температурные пределы процесса определяются соответственно потерями гликоля от испарения и возрастанием его вязко­сти и равны 35-10рС.

 

 

Абсорбционный – основан на способности жидких абсорбентов поглощать из природного газа влагу. В качестве абсорбента (поглотителя) используют - этиленгликоль (ЭГ), диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ), а также масла, амины. Такие установки выгодны при осушке газа до точек росы, не превышающих –200С.

Основным элементом установки есть абсорбер, в котором газ движется снизу вверх, а на встречу сверху - вниз стекает абсорбент. Газ, контактируя с абсорбентом осушается, абсорбент поглощая воду насыщается ей и направляется на регенерацию.

Газ от кустов скважин по газосборным коллекторам-шлейфам подается на пункт переключающей арматуры. В пункте переключающей арматуры сырой газ распределяется по шестнадцати входным ниткам в восемь блоков узла входа шлейфов (УВШ) объединенных попарно. Дальше газ поступает в сепаратор для отделения мех примесей от газа. Дальше идет в абсорбер где осушается газ. Осушенный газ, перед тем как попасть в МГ проходит сначала АВО с целью исключения растепления многолетнемерзлых присадочных грунтов и повышения надежности работы промыслового подземного газопровода. Потом поступает в узел замера газа.

 


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 838; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь