Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Технологические особенности осадки кольцевых заготовок плоскими плитами



 

При пластическом сжатии заготовок плоскопараллельными плитами условная поверхность раздела течения в силу круговой симметрии имеет форму цилиндра радиуса (рисунок 1.9)[68].

Рисунок 1.9. Схема осадки кольцевой заготовки, где х0 и х - начальный и конечный радиусы произвольно выбранной поверхности.

 

Из экспериментально-теоритических исследований проведенных И.Я. Тарновским [53] следует, что при эффективной смазке контактных поверхностей форма заготовки не влияет на формоизменение. После обжатия форма заготовки геометрически подобна первоначальной форме. По мере обжатия внешний и внутренний диаметры заготовки увеличиваются независимо от отношения и толщины стенки S (рисунок 1.10а). Следовательно, при равномерной деформации полость раскрывается.

При осадке без смазки формоизменение металла становится более сложным (рисунок 1.10б), оно изменяется в зависимости от формы заготовки и, прежде всего в зависимости от отношений и .

Осадка тонкостенных заготовок ( < 0, 5) сопровождается образованием двойной бочки. При очень тонкой стенки ( < 0, 3) появляется продольный изгиб стенки в сторону наружной поверхности (рисунок 1.11а).

При осадке заготовок с толстой стенкой ( > 0, 5) происходит образование одинарной бочки как на наружной, так и на внутренней поверхностях заготовки (рисунок 1.11б). При этом по мере обжатия заготовки наружный диаметр ее увеличивается, внутренний диаметр уменьшается и отверстие закрывается.

 

Рисунок 1.10. Фотографии кольцевых заготовок после осадки:

а – со смазкой; б – в условиях сухого трения


Рисунок 1.11а. Формоизменение кольцевой заготовки при = 0, 3

Рисунок 1.11б. Формоизменение кольцевой заготовки при = 0, 5

 

Течение металла в двух взаимно противоположных направлениях свидетельствуют о том, что деформированное состояние металла на различных участках образца различно [67]. На участке, ограниченном диаметрами R и ( – нейтральный диаметр), где течение металла направлено от центра к периферии, оно качественно соответствует деформированному состоянию при осадке сплошного образца (рисунок 1.12), а на участке, ограниченном диаметрами и r, где течение металла направлено к центру образца, деформированное состояние сходно с деформированным состоянием при растяжении. На поверхности раздела течения должно соблюдаться граничное условие [68].


Рисунок 1.12. Схема напряженно-деформированного состояния при осадке кольцевых образцов.

 

Величина радиуса раздела течения в процессе осадки непрерывно изменяется. При этом изменяется соотношение объемов двух участков, на которые поверхность раздела течения разделяет все тело. Это свидетельствует о демонотонности процесса осадки.

Указанное обстоятельство приводит к тому, что при заданных начальных размерах деформируемого тела не представляется возможным определить его конечные размеры, минуя рассмотрение промежуточных стадий формоизменения.

Авторы работ [68, 53] отмечают, что для решения рассматриваемой задачи приходится прибегать к разделению процесса на ряд этапов, принимаю, что на каждом достаточно малом этапе поверхность раздела течения сохраняет неизменный радиус. Тогда, определив размера тела в конце предшествующего этапа, можно с помощью формулы (1.1) определить радиус поверхности раздела на последующем этапе формоизменения.

 

, 1.1

 

где - относительный радиус поверхности раздела течения;

- относительный радиус внутренней контурной поверхности;

- относительный радиус внешней контурной поверхности.

Отсюда следует, что радиус критической поверхности зависит от условий внешнего трения, относительных размеров заготовки и относительной толщины ее стенки.

Переходя, таким образом, последовательно от одного этапа к другому, можно определить конечные размеры деформированного тела. Чем больше дробность заданной суммарной деформации, тем точнее конечные результаты расчета.

В тех случаях, когда < 1, может иметь место потеря устойчивости заготовки, как схематично показано на рисунке 1.13а. Если > 1, то потери устойчивости не наблюдается рисунок 1.13б [68].


Рисунок 1.13. Схема потери устойчивости кольцевого образца при осадке.

 

И.Я. Тарновский в работе [53], исследует усилия необходимые для осадки кольцевых заготовок. Это условие автор находит из полной работы деформации заготовок при наличии контактного скольжения.

В результате теоретических исследований Тарновский определил формулу (1.2) для практических расчетов удельного давления

 

, 1.2

 

где Rп – радиус внутренней боковой поверхности заготовки;

R – радиус наружной боковой поверхности заготовки;

- внешнее трение, ;

- предел прочности.

По данным формулы (1.2) построена диаграмма рисунок 1.14.


Рисунок 1.14. График для определения удельного давления при осадке пустотелых заготовок.

 

При заданных R, h и наибольшее удельное давление потребуется при осадке сплошной цилиндрической заготовки. Это объясняется тем, что при осадке пустотелой заготовки создаются условия для двустороннего радиального течения металла. В результате уменьшаются контактные касательные напряжения и соответственно уменьшается усилие осадки.

Экспериментальная проверка теоретической формулы (1.2) представлена на рисунке 1.15. Были проведены опыты по осадке свинцовых цилиндрических заготовок. Заготовки имели приблизительно одинаковый начальный наружный диаметр около 70 и высоту около 6 мм. Диаметр полости изменялся от 50 мм и 0. Осадку заготовок производили на гидравлическом прессе между сухими шероховатыми плитами. При этом можно принять .


Рисунок 1.15. Удельное давление при осадке полых заготовок: х – опытные данные; ● - расчетные данные.

 

На диаграмме (рисунок 1.15) видно, что расчетная кривая очень близка к опытной. Использование в расчете других величин предела текучести свинца приведет к тому, что расчетная кривая будет расположена выше или ниже, но характер зависимости удельного давления от отношения остается неизменным.

Метод конечного элемента

 

Большое распространение при анализе технологических задач обработке давлением находит метод конечных элементов (МКЭ) [6, 15, 16, 41, 42], который относится к современным методам численного анализа. Первое его применение связано с расчетом инженерных конструкций. Начиная с этого первого применения, МКЭ в течение короткого времени развился в самостоятельную область науки, получившую широкое распространение в решение граничных задач математики, физики и особенно механики сплошной среды. Быстрое развитие МКЭ шло наряду с прогрессом компьютерной техники и ее применением в различных областях науки и инженерной практики.

Метод конечных элементов включает различные подходы, в которых для определения напряжения, деформации и перемещения материал условно разбивают на отдельные элементы, соединенные в узловых точках. Применение этого метода может успешно проводиться как для жесткопластического материала, так и для упругопластического. Этот выбор, также как и выбор конечного элемента, осуществляется, исходя из постановки задачи и рациональности использования того или иного подхода, описанного в МКЭ. Задание граничных условий и введение некоторых гипотез позволяет в значительной степени упростить поиск решения, хотя и в некоторой степени усредняет результат. Однако следует заметить, что для части процессов МКЭ может являться единственным методом, позволяющим достигать необходимого результата с достаточной степенью точности.

В качестве наиболее весомых преимуществ МКЭ можно привести следующие:

· Свойства материалов смежных элементов не должны быть обязательно одинаковыми. Это позволяет применять метод к телам, состоящим из нескольких материалов.

· Криволинейная область может быть аппроксимирована с помощью прямолинейных элементов, или описана точно с помощью криволинейных элементов.

· Размеры элементов могут быть переменными. Это позволяет укрупнить или измельчить сеть разбивки области на элементы, если в этом есть необходимость.

· С помощью МКЭ не представляет труда рассмотреть граничные условия с разрывной поверхностной нагрузкой, а также смешанных граничных условий.

Указанные выше преимущества МКЭ могут быть использованы при составлении достаточно общей программы для решения частных задач определенного класса.

Одной из основных задач при использовании конечно-элементного анализа является построение сетки конечного элемента. С целью упрощения подготовки и проверки входных данных применяется автоматическое построение сетки, что стало возможным благодаря достаточно высокой степени развития компьютерной техники и прикладного программного обеспечения [18]. Кроме того, автоматизация позволяет уменьшить ошибки операторов, обеспечить регулярность сетки, облегчить использование других типов элементов, упростить параметрические исследования.

 

Выводы

 

Обзор работ, посвященных осадке кольцевых заготовок показал:

1. Осадка является эффективным методом обработки металлов давлением, позволяющим значительно экономить материал.

2. Основным дефектом осадки кольцевых заготовок является потеря устойчивости, вследствие тонкостенности заготовки.

3. Теоретические исследования процесса в основном посвящены оценке силовых режимов и не отражают реальную картину течения материала.

4. Недостаточно уделено внимание напряженно-деформированному состоянию осаженной заготовки.

5. Метод конечных элементов является наиболее универсальным и приемлемым методом решения технологических задач.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 220; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь