Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Виды разверток в универсальном осциллографеСтр 1 из 4Следующая ⇒
Общие сведения Наглядное, или визуальное воспроизведение формы колебаний является важной задачей радиотехнических измерений, поскольку форма позволяет сразу оценить многие параметры колебаний. Одним из основных приборов, служащих для визуального наблюдения и исследования формы электрических сигналов, является осциллограф (от лат. «осциллум» — колебание и греч. «графо» — пишу). Большинство современных осциллографов, находящихся в эксплуатации, оснащены электронно-лучевой трубкой (ЭЛТ) и их называют электронно-лучевыми осциллографами. Вместе с тем, в последних разработках осциллографов в качестве отображающих устройств применяют матричные индикаторные панели — газоразрядные, плазменные, жидкокристаллические, твердотельные и т.д. Электронно-лучевой осциллограф — измерительный прибор для визуального наблюдения в прямоугольной системе координат электрических сигналов и измерения их параметров. С помощью осциллографа наблюдают периодические непрерывные и импульсные сигналы, непериодические и случайные сигналы, одиночные импульсы и оценивают их параметры. Чаще всего с помощью осциллографа наблюдают зависимость напряжения от времени, причем, как правило, осью времени является ось абсцисс, а ось ординат отражает уровень сигнала. По изображениям, получаемым на экране осциллографа, можно измерить амплитуду, частоту и фазовый сдвиг, параметры модулированных сигналов и ряд других показателей. На базе осциллографа созданы приборы для исследования переходных, частотных и амплитудных характеристик различных радиотехнических устройств. Для многих целей разработаны и используют различные типы электронно-лучевых осциллографов: универсальные, скоростные, стробоскопические, запоминающие, специальные и т.д. Отличаясь техническими характеристиками, схемными и конструктивными решениями, в этих осциллографах используется общий принцип получения осциллограмм. Возможность наблюдения формы исследуемого сигнала и одновременное измерение его параметров и характеристик выдвигают электроннолучевой осциллограф в разряд универсальных приборов. Наибольшее распространение получили универсальные осциллографы, позволяющие исследовать электрические сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью (5...7 %). Полоса пропускания лучших универсальных осциллографов составляет 300...500 МГц и более. Повторяющиеся кратковременные процессы исследуют с помощью стробоскопических осциллографов. По принципу действия стробоскопические осциллографы относят к приборам с преобразованием временного масштаба и отличаются высокой чувствительностью и широкой (до 10 ГГц) рабочей полосой. Запоминающие осциллографы, имеющие специальные ЭЛТ, обладают способностью сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение запоминающих осциллографов — исследование однократных и редко повторяющихся процессов. Запоминающие осциллографы обладают почти такими же характеристиками, что и универсальные, однако отличаются расширенными функциональными возможностями. Специальные осциллографы оснащены дополнительными блоками целевого назначения. К ним относятся и телевизионные осциллографы, позволяющие наблюдать видеосигнал заданной строки изображения, и цифровые, дающие возможность не только наблюдать сигнал, но и передать его в цифровом виде на компьютер для дальнейшей обработки. Специальные осциллографы снабжают мультиметрами, позволяющими измерять напряжения, силу токов и сопротивления, а также устройствами для исследования вольтамперных характеристик полупроводниковых приборов. По числу одновременно наблюдаемых на экране ЭЛТ сигналов различают одноканальные и многоканальные осциллографы. Совмещение на экране изображений нескольких входных сигналов реализуют или использованием специальной многолучевой трубки, или путем периодического переключения сигналов на разные входы с помощью электронного коммутатора. Универсальные осциллографы Рассмотрим упрощенную структурную схему универсального осциллографа, приведенную на рис. 5.1. В схеме этого осциллографа кроме ЭЛТ можно выделить следующие функциональные блоки: каналы вертикального и горизонтального отклонений, устройство синхронизации и запуска развертки, канал модуляции луча, вспомогательные устройства, источник питания. В осциллографе исследуемый электрический сигнал подают через канал вертикального отклонения на вертикально отклоняющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляют напряжением горизонтальной развертки. Электронно-лучевая трубка представляет собой вакуумную стеклянную колбу, внутри которой размещены электронная пушка, отклоняющие пластины и люминесцентный экран. Электронная пушка состоит из подогреваемого катода К, модулятора (сетки) яркости светового пятна М, электродов фокусировки и ускорения электронного луча— фокусирующего анода А1 ускоряющего анода А2 и основного анода А3. Структурная схема универсального осциллографа
Яркость свечения люминофора ЭЛТ регулируют путем изменения отрицательного напряжения на модуляторе М. Напряжение на первом аноде А1 фокусирует электронный поток в узкий луч. Чтобы придать электронам скорость, необходимую для свечения люминофора, на второй анод А2 подают достаточно большое (до 2000 В) положительное напряжение. Для дополнительного ускорения электронов используют анод А3, к которому приложено высокое положительное напряжение (до 10... 15 кВ). Основным назначением электронной пушки является формирование узкого электронного пучка, при попадании которого на люминесцентный экран на экране возникает светящееся пятно. Работа отклоняющих систем ЭЛТ: электронный пучок (луч), проходит между двумя парами взаимно перпендикулярных металлических отклоняющих пластин: вертикально отклоняющих Y и горизонтально отклоняющих X. Если к отклоняющим пластинам приложить напряжение, то между ними будет существовать электрическое поле, которое будет вызывать отклонение электронного луча в ту или иную сторону. Когда напряжение приложено к вертикально отклоняющим пластинам, то пятно будет перемещаться по оси Y; если же напряжение приложено к горизонтально отклоняющим пластинам, то световое пятно на экране трубки будет отклоняться вдоль оси X. Если сфокусировать электронный луч так, чтобы световое пятно расположилось в центре экрана ЭЛТ, а затем к пластинам Y приложить исследуемый сигнал, а к пластинам X — пилообразное напряжение, то под совместным воздействием двух напряжений луч вычертит на экране трубки осциллограмму, отражающую зависимость входного напряжения от времени. Канал вертикального отклонения луча служит для передачи на пластины Y ЭЛТ исследуемого сигнала uc(t), подводимого к входу Y. Канал вертикального отклонения луча содержит аттенюатор, линию задержки и усилитель Y. Аттенюатор позволяет ослабить сигнал uc(t) в определенное число раз, а регулируемая линия задержки обеспечивает небольшой временной сдвиг сигнала на пластинах Y ЭЛТ относительно начала развертывающего напряжения Ux, что важно для ждущего режима. Усилитель Y обеспечивает амплитуду сигнала на пластинах Y, достаточную для значительного отклонения луча на экране даже малым исследуемым сигналом uc(t). Этот усилитель содержит входной усилитель с изменяемым коэффициентом усиления и парафазный (с противофазными выходными сигналами одинаковой амплитуды) усилитель, обеспечивающий положение светового пятна в центре экрана при отсутствии исследуемых сигналов. Сигнал от калибратора поступает на вход первого усилителя для установки заданного коэффициента усиления. Основные характеристики канала вертикального отклонения: • верхняя граничная частота (порядка 100 МГц и более); • чувствительность; • входные сопротивление (1... 3 МОм) и емкость (1... 5 пФ); • погрешность измерения амплитуды напряжения и интервалов времени — около 5-7 %. Во входную цепь канала вертикального отклонения включают также коммутируемый разделительный конденсатор, позволяющий при необходимости исключить подачу на вход осциллографа постоянной составляющей исследуемого сигнала (так называемый «закрытый» вход). Канал горизонтального отклонения луча служит для создания горизонтально отклоняющего — развертывающего — напряжения Ux с помощью напряжения генератора развертки или Схема синхронизации (и запуска развертки) управляет генератором развертки и обеспечивает кратность периодов исследуемого сигнала и развертки. Для получения неподвижного изображения начало развертки должно быть связано с одной и той же характерной точкой сигнала (фронтом, максимумом амплитуды и т.д.). Это достигают синхронизацией напряжения развертки с напряжением сигнала, поэтому период развертки должен быть равен или кратен периоду исследуемого сигнала: Тразв = пТс, где п = 1, 2, 3, 4, .... Развертка — линия, которую прочерчивает луч на экране при отсутствии исследуемого сигнала в результате действия только одного развертывающего напряжения. Процесс привязки развертки к характерным точкам сигнала называют синхронизацией в автоколебательном режиме работы генератора и запуском — в ждущем. Синхронизацию и запуск развертки производят специальным синхроимпульсом, подаваемым на генератор из устройства синхронизации. В осциллографе установлены два режима синхронизации: внутренняя (Внут.) и внешняя. При внутренней синхронизации (переключатели П1 иП2 — в положении 1) синхроимпульсы вырабатывают из усиленного входного сигнала до его задержки. При внешней синхронизации (переключатели П1 и П2 — в положении 2) сигнал синхронизации подают от внешнего источника на специальный вход X осциллографа. Канал горизонтального отклонения характеризуют чувствительностью и полосой пропускания, показатели которых практически раза в два меньше, чем в канале вертикального отклонения. Основным блоком в канале горизонтального отклонения является генератор развертки, работающий в непрерывном или ждущем режиме. К форме пилообразного напряжения генератора предъявляют ряд специфических требований: • время обратного хода луча должно быть много меньше времени прямого хода, т.е. Тобр < < Тпр; иначе часть изображения сигнала будет отсутствовать; • напряжение развертки при прямом ходе луча должно быть линейным, иначе электронный луч будет двигаться по экрану трубки с различной скоростью и нарушится равномерность временного масштаба по оси X. Это может привести к искажению исследуемого сигнала. Канал управления яркостью (модуляции луча по яркости) предназначен для подсветки прямого хода луча. Подсветку осуществляют передачей с входа Z на управляющий электрод (модулятор М) ЭЛТ сигнала, модулирующего поток луча и, следовательно, яркость свечения люминофора. В схему этого канала входят: аттенюатор, схема изменения полярности и усилитель Z. Для формирования требуемого уровня напряжения модулятора, служит усилитель Z. Усилитель может иметь дополнительный вход, что дает возможность модуляции изображения по яркости внешним сигналом. Канал Z используют и для создания яркостных меток для измерения частоты и фазы. Калибратор — генератор напряжений, формирующий периодический импульсный сигнал с известными амплитудой, длительностью и частотой для калибровки осциллографа, т.е. для обеспечения правильных измерений параметров исследуемого сигнала. Электронно-лучевая трубка
Способ получения сфокусированного луча и принцип управления лучом в осциллографе можно пояснить с помощью схемы, представленной на рис. 5.6. Как уже отмечалось выше, в ЭЛТ совокупность электродов К, М, А1, А2, А3 называют электронной пушкой, которая излучает узкий пучок электронов. Для этого на электроды подают напряжения, примерные величины которых даны на рис. 5.6. Основные характеристики ЭЛТ— чувствительность, полоса пропускания, длительность послесвечения, площадь экрана. Чувствительность трубки ST = LT /UT, где LT — отклонение луча на экране трубки под воздействием напряжения UT, приложенного к паре отклоняющих пластин. Обычно Sт составляет 1 мм/В. С увеличением частоты исследуемого сигнала чувствительность трубки падает. Верхнюю границу полосы пропускания ЭЛТ устанавливают на уровне, где чувствительность составляет примерно 0, 7 от номинального значения. Для универсальных осциллографов широкого использования эта частота достигает 200 МГц. В современных осциллографах часто применяют многолучевые трубки; для этого увеличивают количество электродов. Более экономичным оказывается использование однолучевого осциллографа в режиме поочередной подачи двух сигналов на отклоняющие пластины (двухканальные осциллографы). За счет эффекта послесвечения трубки и свойств глаза человека на экране наблюдают одновременное изображение двух сигналов, хотя их и подают поочередно. К световым параметрам ЭЛТ относят: • диаметр светового пятна, который при оптимальной яркости определяет разрешающую способность ЭЛТ; • максимальная яркость свечения экрана; зависит от плотности электронного луча и регулируется изменением отрицательного напряжения на модуляторе; • цвет свечения экрана; чаще всего используют зеленый и желтый цвета, обеспечивающие наименьшую утомляемость глаз; • время послесвечения; для улучшения визуального восприятия осциллограммы время свечения экрана должно превышать время воздействия на него электронов. • Если требуется наблюдать процессы с частотой менее 10 Гц, используют экраны с послесвечением средней продолжительности до 100 мс.
Для фоторегистрации более предпочтителен люминофор с малым (0, 01 с) послесвечением. При исследовании медленно меняющихся процессов применяют экраны, имеющие послесвечение более 0, 1 с. Напряжение развертки при прямом ходе луча трубки должно быть линейным, иначе появятся искажения исследуемого сигнала (рис. 5.7, а). Нелинейность рабочего участка развертки прямого хода луча характеризуют коэффициентом нелинейности:
физический смысл которого поясняет рис. 5.7, б. Рис. 5.7. Искажения осциллограммы сигнала: а — нелинейность развертки; б -— иллюстрации к понятию коэффициента нелинейности; н — начало развертки; к — конец развертки Коэффициент нелинейности выражает относительное изменение скорости нарастания напряжения в начале и конце рабочего хода развертки; должен быть менее 1 %. Практически линейную развертку на экране ЭЛТ при ограниченном уровне питающего напряжения Е можно создать в схемах интеграторов на ОУ (рис. 5.8). Операционный усилитель относится к «идеальным» устройствам — поэтому в схеме ток i0 = 0. С учетом этого равенства токи iR = uBX/R и ic = - CduBЫX /dt. Приравняв эти токи и полагая RC = tа, после несложных преобразований, получим:
т.е. устройство осуществляет линейное интегрирование напряжения развертки. Запоминающие осциллографы При исследовании одиночных импульсов и периодических сигналов с большой скважностью используют запоминающие осциллографы, основой которых являются запоминающие трубки. Запоминающие ЭЛТ содержат те же элементы, что и ЭЛТ универсального осциллографа, а также дополнительно оснащаются узлом памяти и системой воспроизведения изображения. Узел памяти состоит из двух плоских сеточных электродов, расположенных параллельно экрану (рис. 5.9). Непосредственно у экрана находится мишень, покрытая слоем диэлектрика. Поверх мишени помещен другой электрод в виде сетки с более крупной структурой — коллектор. Изображение записывается электронным лучом высокой энергии (записывающий луч). Электроны луча оседают на мишени, причем количество заряда пропорционально току луча. При перемещении луча на мишени создается потенциальный рельеф, повторяющий форму осциллограммы. После прекращения действия сигнала потенциальный рельеф мишени сохраняется длительное время. Наблюдать записанное У запоминающей ЭЛТ выделяют три характерных режима работы: • наблюдение сигнала без записи изображения; на коллекторе небольшое положительное напряжение Uкол = + 50 В, на мишени нулевой потенциал Uмиш = 0 и она прозрачна для быстро летящих электронов; • режим записи; Uкол = + 50 В, на мишень подают положительный потенциал Uмиш= 30 В, и мишень становится менее прозрачна, поэтому быстро летящие электроны выбивают вторичные электроны и создают на мишени положительный потенциальный рельеф, который остается длительное время; • режим воспроизведения; потенциал мишени снова становится нулевым Uмиш = 0, кроме тех мест, где записан рельеф; мишень облучается широким потоком медленно летящих электронов с воспроизводящей системы, для этого потока мишень прозрачна только в местах рельефа, где записан сигнал. Запоминающие ЭЛТ характеризуют следующие параметры: • яркость свечения экрана в режиме воспроизведения регулируют напряжением модулятора системы воспроизведения и может быть высока, так как воспроизведение производится непрерывно; • время воспроизведения изображения в основном ограничивается устойчивостью потенциального рельефа к ионной бомбардировке; в современных ЭЛТ время воспроизведения может достигать десятков минут; • время сохранения записи определяют при снятом с ЭЛТ напряжении; • скорость записи характеризует быстродействие ЭЛТ в режиме запоминания и ее определяют временем, необходимым для создания потенциального рельефа достаточной величины. Последние модели запоминающих ЭЛТ имеют скорость записи сигналов от 2, 5 до 4000 км/с. Матричная индикаторная панель. Новым отображающим устройством, применяемым в современных осциллографах с аналого-цифровым и полностью цифровым преобразованием исследуемого сигнала, является матричная индикаторная панель. Она представляет собой совокупность расположенных определенным образом отдельных дискретных излучателей (жидкокристаллических, газоразрядных, твердотельных, плазменных и т.д.). На рис. 5.10 показана конструкция матричной газоразрядной панели. Матричная панель содержит две стеклянные пластины 1, на внешних поверхностях которых напылены тонкие проводящие полоски — аноды 2 и катоды 3. Аноды располагают на лицевой пластине, через которую проходит световое излучение, поэтому их делают прозрачными.
Между пластинами помещают диэлектрическую матрицу 4 с отверстиями, образующими газоразрядные (или другие) ячейки в точках перекрестия электродов. Панель заполняют гелий-неоновой смесью и герметизируют. Изображение исследуемого сигнала воспроизводят поочередным свечением газоразрядных ячеек. Для этого со схемы управления панелью на аноды и катоды пластин подают соответственно положительный и отрицательный импульсы напряжений поджига. Номер анода, на который подают импульс напряжения поджига, определяет строку развертки, а номер катода — столбец; на их перекрестии располагается светящаяся ячейка панели. Такой принцип управления лучом развертки называют матричным, на практике его реализуют цифровыми методами и устройствами. Преимущества матричных индикаторных панелей: малые габариты и вес, низкие напряжения питания; в них отсутствуют геометрические искажения, светящаяся точка стабильна. Разработаны панели с внутренней памятью, способные не только воспроизводить, но и запоминать изображение сигнала. Цифровой принцип управления позволяет достаточно просто совместить изображение сигнала с цифробуквенной индикацией его параметров на одном экране. К недостаткам матричных индикаторных панелей следует отнести сложность схемы управления, сравнительно невысокую разрешающую способность и низкое быстродействие. Запоминающие цифровые осциллографы. В последние годы широкое применение в измерительной технике находят запоминающие цифровые осциллографы (ЗЦО). Структурная схема ЗЦО приведена на рис. 5.11. Осциллограф может работать в двух режимах. Если сдвоенный переключатель П находится в положении 1, то схема представляет обычный универсальный осциллограф, а если в положении 2 — то схема работает как ЗЦО. Рис. 5.11. Структурная схема запоминающего цифрового осциллографа Принцип действия ЗЦО: исследуемый сигнал uc(t) с входа Y подают через аттенюатор на информационный вход аналого-цифрового преобразователя (АЦП). Из контроллера (управляющего устройства) на АЦП подаются еще и тактовые импульсы Ut с периодом следования Т. При поступлении в некоторый момент времени ti одного из них, АЦП преобразует амплитуду сигнала uc(ti) в двоичный код U(ti), т.е. набор кодовых чисел 0 и 1. В конце такого преобразования АЦП выдает на контроллер соответствующий сигнал. При этом цифровой код передают в определенную ячейку запоминающего устройства (ЗУ). За время исследования сигнала U(t) в ЗУ накапливаются коды его амплитуд U(ti), U(ti + T), U(ti + 2T), и т.д.; там они могут храниться любое время. Для воспроизведения хранимой информации по команде контроллера из памяти ЗУ коды считывают в требуемой последовательности и заданном темпе и подают на цифроаналоговый преобразователь (ЦАП), который каждый код преобразует в соответствующее ему напряжение. Эти напряжения передают через усилитель на пластины Y. Осциллограмма представляет собой набор светящихся точек. Достоинства ЗЦО: практически неограниченное время хранения информации; широкие пределы скорости ее считывания; возможность замедленного воспроизведения отдельных участков запомненного сигнала; яркие и четкие осциллограммы; возможность обработки информации в цифровом виде на компьютере или с помощью встроенного микропроцессора. Недостаток ЗЦО — из-за сравнительно невысокого быстродействия АЦП большинство осциллографов могут запоминать сигналы, имеющие частоту не выше 100 МГц. Электронно-лучевая трубка ЗЦО также имеет ряд недостатков: большие габариты (длина), высокие питающие напряжения, сравнительно малая долговечность. Поэтому в последние годы в ЗЦО используют матричные газоразрядные и жидкокристаллические индикаторные панели. Цифровые осциллографы Цифровой осциллограф позволяет одновременно наблюдать на экране сигнал и получать численные значения ряда его параметров с большей точностью, чем это возможно путем считывания количественных величин непосредственно с экрана обычного осциллографа. Это возможно потому, что параметры сигнала измеряют непосредственно на входе цифрового осциллографа, тогда как сигнал, прошедший через канал вертикального отклонения, может быть измерен с существенными ошибками (до 10 %). На экране современного цифрового осциллографа, помимо собственно осциллограмм, отображается состояние органов управления (чувствительность, длительность развертки и т.п.). Предусмотрен вывод информации с осциллографа на печать и другие функциональные возможности. Однако этим не ограничиваются возможности цифровых осциллографов. Сопряжение цифровых осциллографов с микропроцессорами позволяет определять действующее значение напряжения сигнала и даже вычислять и отображать на экране преобразования Фурье для любого вида сигнала. В устройствах цифровых осциллографов осуществляется полная цифровая обработка сигнала, поэтому в них, как правило, используют отображение на новейших индикаторных панелях. В цифровых осциллографах отображение результата измерения осуществляют тремя способами: • параллельно с наблюдением изображения сигнала на экране, его численные параметры высвечиваются на табло; • оператор подводит к изображению сигнала на экране световые метки так, чтобы отметить измеряемый параметр, и по цифре на соответствующей регулировке определяет величину интересующего параметра; • используют специальные индикаторы и растровый метод формирования изображения исследуемых сигналов и цифровой информации. В современных цифровых осциллографах автоматически устанавливают оптимальные размеры изображения на экране трубки. Ниже приводятся параметры современного цифрового автоматизированного осциллографа, который является характерным представителем этого класса приборов. Структурная схема цифрового осциллографа содержит: аттенюатор входного сигнала; усилители вертикального и горизонтального отклонения; измерители амплитуды и временных интервалов; интерфейсы сигнала и измерителей; микропроцессорный контроллер; генератор развертки; схему синхронизации и электроннолучевую трубку. Технические характеристики типового современного цифрового осциллографа: полоса пропускания 0... 100 МГц; размер экрана 80 х 100 мм; погрешность цифровых измерений 2... 3 %. Функциональные возможности: автоматическая установка размеров изображения; автоматическая синхронизация; разностные измерения между двумя метками; автоматическое измерение размаха, максимума и минимума амплитуды сигналов, периода, длительности, паузы, фронта и спада импульсов; вход в канал общего пользования. Из структурной схемы, видно, что амплитудные и временные параметры исследуемого сигнала определяют с помощью встроенных в прибор измерителей. На основании данных измерений микропроцессорный контроллер производит вычисление требуемых коэффициентов отклоненияи развертки и через интерфейс устанавливает эти коэффициенты в аппаратной части каналов вертикального и горизонтального отклонения. Это обеспечивает неизменные размеры изображения по вертикали и горизонтали, а также автоматическую синхронизацию сигнала. Микропроцессорный контроллер также опрашивает положение органов управления на передней панели, и данные опроса после кодирования снова поступают в контроллер, который через интерфейс включает соответствующий режим автоматического измерения. Результаты измерений индицируют на отдельном световом табло (оно может быть встроено в экран трубки), причем амплитудные и временные параметры сигнала отображают одновременно. Контрольные вопросы 1. Для каких целей применяют осциллографы? 2. Какие блоки входят в состав структурной схемы универсального осциллографа? Их назначение? 3. Для чего применяют синхронизацию разверток осциллографа? 4. Перечислите основные типы синхронизации. 5. Для каких целей в осциллографах применяют калибраторы амплитуды?
Общие сведения Наглядное, или визуальное воспроизведение формы колебаний является важной задачей радиотехнических измерений, поскольку форма позволяет сразу оценить многие параметры колебаний. Одним из основных приборов, служащих для визуального наблюдения и исследования формы электрических сигналов, является осциллограф (от лат. «осциллум» — колебание и греч. «графо» — пишу). Большинство современных осциллографов, находящихся в эксплуатации, оснащены электронно-лучевой трубкой (ЭЛТ) и их называют электронно-лучевыми осциллографами. Вместе с тем, в последних разработках осциллографов в качестве отображающих устройств применяют матричные индикаторные панели — газоразрядные, плазменные, жидкокристаллические, твердотельные и т.д. Электронно-лучевой осциллограф — измерительный прибор для визуального наблюдения в прямоугольной системе координат электрических сигналов и измерения их параметров. С помощью осциллографа наблюдают периодические непрерывные и импульсные сигналы, непериодические и случайные сигналы, одиночные импульсы и оценивают их параметры. Чаще всего с помощью осциллографа наблюдают зависимость напряжения от времени, причем, как правило, осью времени является ось абсцисс, а ось ординат отражает уровень сигнала. По изображениям, получаемым на экране осциллографа, можно измерить амплитуду, частоту и фазовый сдвиг, параметры модулированных сигналов и ряд других показателей. На базе осциллографа созданы приборы для исследования переходных, частотных и амплитудных характеристик различных радиотехнических устройств. Для многих целей разработаны и используют различные типы электронно-лучевых осциллографов: универсальные, скоростные, стробоскопические, запоминающие, специальные и т.д. Отличаясь техническими характеристиками, схемными и конструктивными решениями, в этих осциллографах используется общий принцип получения осциллограмм. Возможность наблюдения формы исследуемого сигнала и одновременное измерение его параметров и характеристик выдвигают электроннолучевой осциллограф в разряд универсальных приборов. Наибольшее распространение получили универсальные осциллографы, позволяющие исследовать электрические сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью (5...7 %). Полоса пропускания лучших универсальных осциллографов составляет 300...500 МГц и более. Повторяющиеся кратковременные процессы исследуют с помощью стробоскопических осциллографов. По принципу действия стробоскопические осциллографы относят к приборам с преобразованием временного масштаба и отличаются высокой чувствительностью и широкой (до 10 ГГц) рабочей полосой. Запоминающие осциллографы, имеющие специальные ЭЛТ, обладают способностью сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение запоминающих осциллографов — исследование однократных и редко повторяющихся процессов. Запоминающие осциллографы обладают почти такими же характеристиками, что и универсальные, однако отличаются расширенными функциональными возможностями. Специальные осциллографы оснащены дополнительными блоками целевого назначения. К ним относятся и телевизионные осциллографы, позволяющие наблюдать видеосигнал заданной строки изображения, и цифровые, дающие возможность не только наблюдать сигнал, но и передать его в цифровом виде на компьютер для дальнейшей обработки. Специальные осциллографы снабжают мультиметрами, позволяющими измерять напряжения, силу токов и сопротивления, а также устройствами для исследования вольтамперных характеристик полупроводниковых приборов. По числу одновременно наблюдаемых на экране ЭЛТ сигналов различают одноканальные и многоканальные осциллографы. Совмещение на экране изображений нескольких входных сигналов реализуют или использованием специальной многолучевой трубки, или путем периодического переключения сигналов на разные входы с помощью электронного коммутатора. Универсальные осциллографы Рассмотрим упрощенную структурную схему универсального осциллографа, приведенную на рис. 5.1. В схеме этого осциллографа кроме ЭЛТ можно выделить следующие функциональные блоки: каналы вертикального и горизонтального отклонений, устройство синхронизации и запуска развертки, канал модуляции луча, вспомогательные устройства, источник питания. В осциллографе исследуемый электрический сигнал подают через канал вертикального отклонения на вертикально отклоняющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляют напряжением горизонтальной развертки. Электронно-лучевая трубка представляет собой вакуумную стеклянную колбу, внутри которой размещены электронная пушка, отклоняющие пластины и люминесцентный экран. Электронная пушка состоит из подогреваемого катода К, модулятора (сетки) яркости светового пятна М, электродов фокусировки и ускорения электронного луча— фокусирующего анода А1 ускоряющего анода А2 и основного анода А3. Структурная схема универсального осциллографа
|
Последнее изменение этой страницы: 2017-05-11; Просмотров: 343; Нарушение авторского права страницы