|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Двухканальные и двулучевые осциллографы
Двухканальные осциллографы имеют два идентичных канала вертикального отклонения (вход первого — Y1, второго — Y2) и электронный переключатель, который может поочередно подавать выходные сигналы каналов на одни и те же пластины Y. В зависимости от управления работой электронного переключателя можно реализовать следующие основные режимы работы осциллографа: одноканальный (на экране виден один сигнал, подаваемый на Y1 или Y2); поочередный (на экране видны оба сигнала за счет переключения электронного переключателя во время каждого обратного хода развертки). Двулучевые осциллографы имеют два канала Y и специальную двулучевую ЭЛТ, в которой есть две независимые электронные пушки и пара систем отклоняющих пластин. Горизонтальная развертка лучей общая и она запускается от генератора развертки, а вертикальная — каждая от «своего» канала Y, что позволяет наблюдать на экране осциллограммы двух сигналов (без их периодического прерывания, как в двухканальных). Такие осциллографы намного сложнее схемотехнически и дороже двухканальных. Автоматизация процесса измерений в осциллографах Автоматизация процесса измерений дает значительный выигрыш во времени и в ряде случаев существенно повышает точность измерений. Автоматическая установка масштабов по осям X и Y. Действие автоматической установки масштабов заключается в том, что при изменении амплитуды и длительности входного сигнала в интервале динамического диапазона осциллографа размеры изображения остаются постоянными или меняются в заданных пределах. При этом производится цифровая индикация коэффициентов отклонения и развертки либо на специальном индикаторе, либо непосредственно на экране ЭЛТ. Автоматизация регулировки яркости изображения. Регулировка яркости изображения — необходимая операция при осциллографировании. Она занимает много времени, так как яркость зависит от скорости перемещения луча по экрану, связанной с видом сигнала и величиной масштаба. Кроме того, яркость изображения не остается постоянной в пределах экрана, поскольку изображение содержит участки, которые луч проходит с разной скоростью. Для получения одинаковой яркости изображения применяют метод автоматической модуляции луча ЭЛТ. Уровень общей яркости устанавливают для наиболее благоприятных условий наблюдения. Выравнивание изображения по яркости увеличивает точность измерения, особенно в случаях, когда сигнал имеет участки с резко отличающейся скоростью изменения напряжения (например, импульс с крутыми фронтами). Так как фокусировка луча зависит от яркости, в современных осциллографах применяют систему автофокусировки. При этом напряжение на фокусирующих электродах ЭЛТ автоматически меняют при вариации яркости луча. Запоминающие осциллографы При исследовании одиночных импульсов и периодических сигналов с большой скважностью используют запоминающие осциллографы, основой которых являются запоминающие трубки. Запоминающие ЭЛТ содержат те же элементы, что и ЭЛТ универсального осциллографа, а также дополнительно оснащаются узлом памяти и системой воспроизведения изображения. Узел памяти состоит из двух плоских сеточных электродов, расположенных параллельно экрану (рис. 5.9). Непосредственно у экрана находится мишень, покрытая слоем диэлектрика. Поверх мишени помещен другой электрод в виде сетки с более крупной структурой — коллектор.
мишени сохраняется длительное время. Наблюдать записанное У запоминающей ЭЛТ выделяют три характерных режима работы: • наблюдение сигнала без записи изображения; на коллекторе небольшое положительное напряжение Uкол = + 50 В, на мишени нулевой потенциал Uмиш = 0 и она прозрачна для быстро летящих электронов; • режим записи; Uкол = + 50 В, на мишень подают положительный потенциал Uмиш= 30 В, и мишень становится менее прозрачна, поэтому быстро летящие электроны выбивают вторичные электроны и создают на мишени положительный потенциальный рельеф, который остается длительное время; • режим воспроизведения; потенциал мишени снова становится нулевым Uмиш = 0, кроме тех мест, где записан рельеф; мишень облучается широким потоком медленно летящих электронов с воспроизводящей системы, для этого потока мишень прозрачна только в местах рельефа, где записан сигнал. Запоминающие ЭЛТ характеризуют следующие параметры: • яркость свечения экрана в режиме воспроизведения регулируют напряжением модулятора системы воспроизведения и может быть высока, так как воспроизведение производится непрерывно; • время воспроизведения изображения в основном ограничивается устойчивостью потенциального рельефа к ионной бомбардировке; в современных ЭЛТ время воспроизведения может достигать десятков минут; • время сохранения записи определяют при снятом с ЭЛТ напряжении; • скорость записи характеризует быстродействие ЭЛТ в режиме запоминания и ее определяют временем, необходимым для создания потенциального рельефа достаточной величины. Последние модели запоминающих ЭЛТ имеют скорость записи сигналов от 2, 5 до 4000 км/с.
Матричная панель содержит две стеклянные пластины 1, на внешних поверхностях которых напылены тонкие проводящие полоски — аноды 2 и катоды 3. Аноды располагают на лицевой пластине, через которую проходит световое излучение, поэтому их делают прозрачными.
Между пластинами помещают диэлектрическую матрицу 4 с отверстиями, образующими газоразрядные (или другие) ячейки в точках перекрестия электродов. Панель заполняют гелий-неоновой смесью и герметизируют. Изображение исследуемого сигнала воспроизводят поочередным свечением газоразрядных ячеек. Для этого со схемы управления панелью на аноды и катоды пластин подают соответственно положительный и отрицательный импульсы напряжений поджига. Номер анода, на который подают импульс напряжения поджига, определяет строку развертки, а номер катода — столбец; на их перекрестии располагается светящаяся ячейка панели. Такой принцип управления лучом развертки называют матричным, на практике его реализуют цифровыми методами и устройствами. Преимущества матричных индикаторных панелей: малые габариты и вес, низкие напряжения питания; в них отсутствуют геометрические искажения, светящаяся точка стабильна. Разработаны панели с внутренней памятью, способные не только воспроизводить, но и запоминать изображение сигнала. Цифровой принцип управления позволяет достаточно просто совместить изображение сигнала с цифробуквенной индикацией его параметров на одном экране. К недостаткам матричных индикаторных панелей следует отнести сложность схемы управления, сравнительно невысокую разрешающую способность и низкое быстродействие. Запоминающие цифровые осциллографы. В последние годы широкое применение в измерительной технике находят запоминающие цифровые осциллографы (ЗЦО). Структурная схема ЗЦО приведена на рис. 5.11. Осциллограф может работать в двух режимах. Если сдвоенный переключатель П находится в положении 1, то схема представляет обычный универсальный осциллограф, а если в положении 2 — то схема работает как ЗЦО. Рис. 5.11. Структурная схема запоминающего цифрового осциллографа
За время исследования сигнала U(t) в ЗУ накапливаются коды его амплитуд U(ti), U(ti + T), U(ti + 2T), и т.д.; там они могут храниться любое время. Для воспроизведения хранимой информации по команде контроллера из памяти ЗУ коды считывают в требуемой последовательности и заданном темпе и подают на цифроаналоговый преобразователь (ЦАП), который каждый код преобразует в соответствующее ему напряжение. Эти напряжения передают через усилитель на пластины Y. Осциллограмма представляет собой набор светящихся точек. Достоинства ЗЦО: практически неограниченное время хранения информации; широкие пределы скорости ее считывания; возможность замедленного воспроизведения отдельных участков запомненного сигнала; яркие и четкие осциллограммы; возможность обработки информации в цифровом виде на компьютере или с помощью встроенного микропроцессора. Недостаток ЗЦО — из-за сравнительно невысокого быстродействия АЦП большинство осциллографов могут запоминать сигналы, имеющие частоту не выше 100 МГц. Электронно-лучевая трубка ЗЦО также имеет ряд недостатков: большие габариты (длина), высокие питающие напряжения, сравнительно малая долговечность. Поэтому в последние годы в ЗЦО используют матричные газоразрядные и жидкокристаллические индикаторные панели. |
Последнее изменение этой страницы: 2017-05-11; Просмотров: 215; Нарушение авторского права страницы