Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Метод умножения числителя и знаменателя на сопряженное выражение
Продолжаем рассматривать неопределенность вида Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни. Пример 6 Найти предел Начинаем решать. Сначала пробуем подставить 3 в выражение под знаком предела
Получена неопределенность вида , которую нужно устранять. Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще. Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности используют метод умножения числителя и знаменателя на сопряженное выражение. Вспоминаем нашу нетленную формулу разности квадратов: Умножаем числитель на сопряженное выражение: Обратите внимание, что под корнями при этой операции мы ничего не трогаем. Хорошо, мы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на : То есть, мы умножили числитель и знаменатель на сопряженное выражение. Умножили. Теперь самое время применить вверху формулу : Неопределенность не пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни: Число, как уже отмечалось ранее, лучше вынести за значок предела. Теперь осталось разложить числитель и знаменатель на множители и сократить «виновников» неопределённости, ну а предел константы – равен самой константе: Готово. Как должно выглядеть решение данного примера в чистовом варианте? Умножим числитель и знаменатель на сопряженное выражение. Пример 7 Найти предел Сначала попробуйте решить его самостоятельно. Окончательное решение примера может выглядеть так: Разложим числитель на множители: Умножим числитель и знаменатель на сопряженное выражение
Как найти производную?
Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной темы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне. Есть? Приступим.. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта. Советую следующий порядок изучения темы: Сначала изучить нахождение простейших производных. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций. Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами. Собственно, сразу рассмотрим пример: Пример 1 Найти производную функции Решение: Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию . Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называетсядифференцированием. Обозначения: Производную обозначают или . ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции! Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно: производную константы: производную степенной функции: Зачем запоминать? Данные знания являются элементарными знаниями о производныхКроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными. В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций. В этой связи переходим к рассмотрению правил дифференцирования:
|
Последнее изменение этой страницы: 2017-05-11; Просмотров: 310; Нарушение авторского права страницы