Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Алгоритмы решения общей задачи линейного программирования



Алгоритмы решения общей задачи линейного программирования

Наиболее известным и широко применяемым на практике для решения общей задачи линейного программирования (ЛП) является симплекс-метод. Несмотря на то, что симплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач ЛП, он является алгоритмом с экспоненциальной сложностью. Причина этого состоит в комбинаторном характере симплекс-метода, последовательно перебирающего вершины многогранника допустимых решений при поиске оптимального решения.

Первый полиномиальный алгоритм, метод эллипсоидов, был предложен в 1979 г. советским математиком Л.Хачияном, разрешив таким образом проблему, долгое время остававшуюся нерешенной. Метод эллипсоидов имеет совершенно другую, некомбинаторную, природу, нежели симплекс-метод. Однако в вычислительном плане этот метод оказался неперспективным. Тем не менее сам факт полиномиальной сложности задач привел к созданию целого класса эффективных алгоритмов ЛП - методов внутренней точки, первым из которых был алгоритм Н. Кармаркара, предложенный в 1984 г. Алгоритмы этого типа используют непрерывную трактовку задачи ЛП, когда вместо перебора вершин многогранника решений задачи ЛП осуществляется поиск вдоль траекторий в пространстве переменных задачи, не проходящих через вершины многогранника. Метод внутренних точек, который, в отличие от симплекс-метода, обходит точки из внутренней части области допустимых значений, использует методы логарифмических барьерных функций нелинейного программирования, разработанные в 60-х гг. Fiacco и McCormick.


МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Графический метод

Математические основы решения задачи линейного программирования графическим способом

Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n =2 и n =3.

 

Наиболее наглядна эта интерпретация для случая n =2, т.е. для случая двух переменных Х1 и Х2. Пусть нам задана задача линейного программирования в стандартной форме

Возьмём на плоскости декартову систему координат и каждой паре чисел (Х1, Х2) поставим в соответствие точку на этой плоскости.

Oбратим прежде всего внимание на ограничения X1> =0 и X2> =0. Они из всей плоскости вырезают лишь её первую четверть (см. рис. 1). Рассмотрим теперь, какие области соответствуют неравенствам вида . Сначала рассмотрим область, соответствующую равенству . Как Вы, конечно, знаете, это прямая линия. Строить её проще всего по двум точкам. Дальше через эти две точки можно по линейке провести прямую линию (см. рисунок 2)

Эта построенная прямая разбивает всю плоскость на две полуплоскости. В одной её части , а в другой наоборот . Узнать, в какой полуплоскости какой знак имеет место проще всего посмотрев, какому неравенству удовлетворяет какая-то точка плоскости, например, начало координат, т.е. точка (0, 0).

Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой аi1х1 + аi2х2 ≤ bi i = 1, m. Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми x1 = 0; х2 = 0.. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых составляют решение данной системы. Совокупность этих точек называют многоугольником решений. Это может быть точка, отрезок, луч, замкнутый многоугольник, неограниченная многоугольная область. Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.

Этапы решения задач линейного программирования

Графическим методом

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Не приводя строгих доказательств, укажем те случаи, которые могут получиться.

 

1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 3а)).

2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 3.б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение . Оставшаяся часть будет неограниченным выпуклым многоугольником.

Рис. 3 a) Рис. 3 б)

 

Наконец, возможен случай, когда неравенства противоречат друг другу, и допустимая область вообще пуста.

Рассмотрим теорию на конкретном примере:

Найти допустимую область задачи линейного программирования, определяемую ограничениями

Рис. 5

Обратите внимание на то, что оптимальный план, как правило, соответствует какой-то вершине многоугольника, изображающего допустимую область. И лишь в том случае, когда прямая может случиться так, что решение не будет единственным. Но и в этом случае вершины, соответствующие границам этой стороны, дают оптимальные планы нашей задачи линейного программирования. Таким образом, вершины допустимой области играют в решении задач линейного программирования особую роль. Целевая функция 1Х1+2Х2 стремится к МАХ

Ограничения

4x1 + 8x2 + 4x3 ≤ 120

6x1 + 2x2 + 3x3 ≤ 160

2x1 + 2x2 + 4x3 ≤ 400

Решим задачу симплекс методом.

 

Математическая модель должна быть в канонической форме, т.е. все ограничения в виде неравенств.

Введем новые переменные x4, x5, x6.

4x1 + 8x2 + 4x3 + x4 =120

6x1 + 2x2 + 3x3 + x5 = 160

2x1 + 2x2 + 4x3 +x6 ≤ =400

Решим задачу линейного программирования симплекс методом.

Находим исходные опорные решения и проверяем на оптимальность, для этого заполняем симплексную таблицу.

I опорное решение.

x1=0, x2=0, x3=0, x4=120, x5=160, x6=400, Z=0.

Если решение не оптимально, строим вторую симплекс-таблицу.

 

Находим ключевой элемент: выбираем столбец с наибольшей по модулю отрицательной оценкой, для этого столбца находим bi/xij и выбираем минимальное значение, т.е. выбираем строку, на пересечении выбранного столбца и строки определяется ключевой элемент;

Ключевой элемент находится на пересечении столбца х1 и строки х5, т.е. меняем их местами. Свободные переменные x5, x2, x3; базисные переменные x1, x4, x6.

Во второй симплекс-таблице переписываем ключевую строку, разделив ее на ключевой элемент, заполняем базисные столбцы, остальные коэффициенты таблицы находим по правилу прямоугольника;

Получаем новое опорное решение и проверяем его на оптимальность,

II опорное решение.

x1=26, 67, x2=0, x3=0, x4=13, 33, x5=0, x6=346, 67, Z=266, 67.

Данное решение не является оптимальным, т.к. в последней строке симплекс-таблицы находится отрицательное число – строим третью симплекс-таблицу.

Ключевой элемент находится на пересечении столбца х2 и строки х4, т.е. меняем их местами. Свободные переменные x4, x3, x5; базисные переменные x2, x1, x6.

III опорное решение.

 

x1=26, x2=2, x3=0, x4=0, x5=0, x6=344, Z=276.

Третье опорное решение является оптимальным, так как последняя строка симплекс таблицы содержит только положительные элементы.

Подставляем в линейную функцию Z = 10*26 + 8*2 + 6*0 = 276.

Постановка задачи

Классическая транспортная задача ЛП формулируется следующим образом.

Имеется m пунктов производства (поставщиков) и n пунктов

потребления (потребителей) однородного продукта. Заданы величины:

ai - объем производства (запас) i-го поставщика, i=1, m;

bj- объем потребления (спрос) j-го потребителя, i=1, n;

cij- стоимость перевозки (транспортные затраты) единицы продукта от i-го поставщика к j-му потребителю.

Требуется составить такой план перевозок, при котором спрос

всех потребителей был бы выполнен и при этом общая стоимость всех

перевозок была бы минимальна.

Математическая модель транспортной задачи имеет вид

 

 

Транспортная задача, в которой суммарные запасы и суммарные потребности совпадают, называется закрытой моделью; в противном случае - открытой.

Алгоритмы решения общей задачи линейного программирования

Наиболее известным и широко применяемым на практике для решения общей задачи линейного программирования (ЛП) является симплекс-метод. Несмотря на то, что симплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач ЛП, он является алгоритмом с экспоненциальной сложностью. Причина этого состоит в комбинаторном характере симплекс-метода, последовательно перебирающего вершины многогранника допустимых решений при поиске оптимального решения.

Первый полиномиальный алгоритм, метод эллипсоидов, был предложен в 1979 г. советским математиком Л.Хачияном, разрешив таким образом проблему, долгое время остававшуюся нерешенной. Метод эллипсоидов имеет совершенно другую, некомбинаторную, природу, нежели симплекс-метод. Однако в вычислительном плане этот метод оказался неперспективным. Тем не менее сам факт полиномиальной сложности задач привел к созданию целого класса эффективных алгоритмов ЛП - методов внутренней точки, первым из которых был алгоритм Н. Кармаркара, предложенный в 1984 г. Алгоритмы этого типа используют непрерывную трактовку задачи ЛП, когда вместо перебора вершин многогранника решений задачи ЛП осуществляется поиск вдоль траекторий в пространстве переменных задачи, не проходящих через вершины многогранника. Метод внутренних точек, который, в отличие от симплекс-метода, обходит точки из внутренней части области допустимых значений, использует методы логарифмических барьерных функций нелинейного программирования, разработанные в 60-х гг. Fiacco и McCormick.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 193; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь