Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ⇐ ПредыдущаяСтр 2 из 2
Графический метод Математические основы решения задачи линейного программирования графическим способом Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n =2 и n =3.
Наиболее наглядна эта интерпретация для случая n =2, т.е. для случая двух переменных Х1 и Х2. Пусть нам задана задача линейного программирования в стандартной форме
Возьмём на плоскости декартову систему координат и каждой паре чисел (Х1, Х2) поставим в соответствие точку на этой плоскости.
Oбратим прежде всего внимание на ограничения X1> =0 и X2> =0. Они из всей плоскости вырезают лишь её первую четверть (см. рис. 1). Рассмотрим теперь, какие области соответствуют неравенствам вида . Сначала рассмотрим область, соответствующую равенству . Как Вы, конечно, знаете, это прямая линия. Строить её проще всего по двум точкам. Дальше через эти две точки можно по линейке провести прямую линию (см. рисунок 2) Эта построенная прямая разбивает всю плоскость на две полуплоскости. В одной её части , а в другой наоборот . Узнать, в какой полуплоскости какой знак имеет место проще всего посмотрев, какому неравенству удовлетворяет какая-то точка плоскости, например, начало координат, т.е. точка (0, 0). Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой аi1х1 + аi2х2 ≤ bi i = 1, m. Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми x1 = 0; х2 = 0.. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых составляют решение данной системы. Совокупность этих точек называют многоугольником решений. Это может быть точка, отрезок, луч, замкнутый многоугольник, неограниченная многоугольная область. Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений. Этапы решения задач линейного программирования Графическим методом Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно. Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные. Не приводя строгих доказательств, укажем те случаи, которые могут получиться.
1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 3а)). 2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 3.б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение . Оставшаяся часть будет неограниченным выпуклым многоугольником. Рис. 3 a) Рис. 3 б)
Наконец, возможен случай, когда неравенства противоречат друг другу, и допустимая область вообще пуста. Рассмотрим теорию на конкретном примере: Найти допустимую область задачи линейного программирования, определяемую ограничениями
Рис. 5 Обратите внимание на то, что оптимальный план, как правило, соответствует какой-то вершине многоугольника, изображающего допустимую область. И лишь в том случае, когда прямая может случиться так, что решение не будет единственным. Но и в этом случае вершины, соответствующие границам этой стороны, дают оптимальные планы нашей задачи линейного программирования. Таким образом, вершины допустимой области играют в решении задач линейного программирования особую роль. Целевая функция 1Х1+2Х2 стремится к МАХ |
Последнее изменение этой страницы: 2017-05-11; Просмотров: 179; Нарушение авторского права страницы