Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общие свойства жидкости и газа



Жидкости:

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости — несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность — это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.

Используются также укрупненные показатели: – килопаскаль — 1 кПа= 103 Па; – мегапаскаль — 1 МПа = 106 Па.

Сжимаемость жидкости — это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости — ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.

Газов:

Физические свойства газов, как и любого вещества начинаем с определений связанных с его массой и энергией. Так плотность газа, в определенном смысле равноправно, определяется следующим образом: • если известны конечные значения массы и размеры объема, то имеем • для бесконечно малых объемов вещества предельное значение плотности равно При расчетах коммерческого расхода газа пользуются относительной плотностью газа, т.е. отношением r - плотности газа к плотности сухого воздуха - ra при стандартных условиях. Относительная плотность газа по воздуху равна Плотность газа при 0°С и атмосферном давлении может быть определена по его молярной массе – Пересчет плотности при разных физических параметрах газа производим по формуле. Плотность газовой смеси определяется по правилу смешения (аддитивности) ai - объемные концентрации газовых компонент в смеси (0 ai 1), - плотности компонентов смеси. Удельный объем газа вычисляется следующим образом Средняя молярная масса смеси равна В термических расчетах, в зависимости от происходящего процесса, применяют понятие теплоемкости вещества - при постоянном давлении cp, и при постоянном объеме cv, для которых справедлива формула Майера Отношение теплоемкостей называется показателем адиабаты Другим важным физическим свойством реального газа является его сжимаемость. По сути сжимаемость газа является определяющим фактором отличающим отклонение газа от идеального. Характеристика сжимаемости определяется коэффициентом сжимаемости, или Z - фактором, в зарубежной терминологии, в модели реального газа. Коэффициент сжимаемости зависит от приведенных температуры и давления (Tm, pm), которые определяются следующим образом T, Tcr - текущая и критическая температура газа, p, pcr - текущее и критическое давление газа, например в трубопроводе Расчет коэффициента сжимаемости (по методике ОНТП 51-1-85): По Губкинскому университетут: Рассмотрим физические свойства реальных газов связанных с его вязкостью. Как известно, вязкость сплошной среды определяет ее внутренее трение между слоями жидкости или газа при их относительном движении. Определяются из экспериментальных зависимостей между напряжением и градиентом скорости. Для расчета касательных напряжений, используется понятие коэффициента динамической вязкости, который используется при расчете касательных напряжений по формуле: v, n - скорость относительного течения и ее нормаль к линиям тока; - коэффициент динамической вязкости газа (Па с); - напряжения внутреннего трения (Па). Для кинематической вязкости введено обозначение: Практически все природные газы содержат водяные пары. Наличие водяных паров в газе способствуют образованию гидратов на поверхности трубы. Различают w - абсолютную массовую и - объемную влажности Эти формулы не учитывают отклонение законов реального газа от законов идеального газа. Поэтому вводится понятие относительной влажности газа. Относительная влажность газа это отношение фактического количества водяных паров к максимально возможному (при одних и тех же давлениях и температуре) в единице объема: mw, T - максимально возможное количество водяного пара, которое может находится при данной температуре T; mw -плотность пара; w, T - плотность насыщенного пара; pw - парциальное давление водяного пара в газовой смеси; pw, T - давление насыщенного водяного пара в газовой смеси. Температура, при которой газ становится насыщенным при определенном далении, называется точкой росы. При технологических расчетах газопровода газ должен быть осушен так, чтобы температура его транспортировки была бы на на несколько градусов ниже его точки росы.

Вязкая жидкость силы внутреннего трения

Понятие вязкости. Сила внутреннего трения. Ламинарное и турбулентное течение жидкости. Число Рейнольдса. Определение вязкости методом Стокса, методом Пуазейля. Движение тел в жидкостях и газах. Методы подобия в физике.

Идеальная жидкость является физической моделью, позволяющей понять суть явления в некотором приближении. Всем реальным жидкостям присущи вязкость или внутреннее трение, что приводит к появлению у них принципиально новых свойств. В частности, возникшее в жидкости движение после прекращения действия причин, его вызвавших, постепенно замедляется. Следовательно, жидкость при своем движении в трубе испытывает сопротивление. Такого рода сопротивление называют вязким, подчеркивая тем самым отличие от сопротивления в твердых телах. Вязкость — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения , направленные по касательной к поверхности слоев.

В твердых телах в случае попытки изменения их формы (например, при сдвиге одной части тела относительно другой) возникает сила упругой деформации сдвига, пропорциональная смещению атомов, находящихся в узлах кристаллической решетки соседних атомных слоев. В жидкости эта сила пропорциональна величине изменения скорости, наблюдающейся при переходе между соседними слоями взаимодействующих молекул. Рассмотрим следующий опыт. Расположим жидкость между двумя твердыми параллельными пластинами равной площади S, находящимися на расстоянии d. Попытаемся сдвинуть одну из пластин относительно другой. Опыт показывает, что для поддержания постоянной относительной скорости движения этих пластин u к одной из них нужно приложить постоянную силу F, направленную вдоль поверхности пластины и пропорциональную площади пластины S.

| F | = η ·| u |·S/d, (13.1)

где η - постоянная для данной жидкости величина, называемая вязкостью.

Необходимость наличия такой силы обусловлена “прилипанием” приграничных молекул жидкости к пластинам, что в свою очередь вызывает движение молекул, находящихся в объеме жидкости, с разной скоростью. Величина силы F зависит от свойств жидкости и обусловлена взаимодействием между проскальзывающими относительно друг друга слоями жидкости. Это взаимодействие характеризует внутреннее трение.

Рис. 13.1. Взаимодействие молекул жидкости, расположенных в соседних слоях.

Рассмотрим взаимодействие слоев жидкости, движущихся параллельно друг другу и стенкам трубы, в которую заключена эта жидкость. На рис. 13.1 изображены соседние слои жидкости, расположенные на расстоянии Δ z друг от друга. Площадь соприкасающихся слоев S существенно больше размеров молекул. Верхний и нижний слои выделенного объема движутся параллельно оси трубы и имеют разные скорости: u1 и u2 соответственно. Для сохранения постоянства этих скоростей к поверхностям выделенного объема необходимо приложить постоянные по величине силы F 1 и F 2, которые должны уравновесить силы внутреннего трения F тр1 и F тр2, действующие между соседними слоями выделенного объема жидкости.

В соответствии с третьим законом Ньютона силы внутреннего трения равны по величине и противоположны по направлению, поэтому верхний слой замедляет движение нижнего, а нижний - ускоряет движение верхнего (см. рис. 13.1). Величина силы внутреннего трения задается формулой Ньютона:

Fтр = η ·|Δ u /Δ z|·S, или (13.2)

где η - коэффициент вязкости;

|Δ u/Δ z| - модуль градиента скорости, показывающий, как быстро меняется величина вектора скорости в направлении, перпендикулярном течению жидкости. Градиент скорости ∆ v/∆ x показывает, как быстро меняется скорость при переходе от слоя к слою в направлении x перпендикулярном направлению движения слоев.

S - площадь поверхности соприкасающихся слоев жидкости.

Коэффициент пропорциональности η , зависящий от природы жидкости и температуры, называется динамической вязкостью (или просто вязкостью ). Физический смысл коэффициента вязкости вытекает из выражения (13.2):


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 291; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь