Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Нормальные напряжения при изгибе.
Расчеты на прочность Знать распределение нормальных напряжений по сечению балки при чистом изгибе, расчетные формулы и условия прочности. Уметь выполнять проектировочные и проверочные расчеты на прочность, выбирать рациональные формы поперечных сечений. Деформации при чистом изгибе При чистом изгибе в сечении возникает только один внутренний силовой фактор — изгибающий момент. Рассмотрим деформацию бруса, нагруженного внешней парой сил с моментом m (рис. 32.1а). При чистом изгибе выполняются ги потезы плоских сечений и ненадавливаемости слоев. Сечения бруса, плоские и перпендикулярные продольной оси, после деформации остаются плоскими и перпендикулярными продольной оси. Продольные волокна не давят друг на друга, поэтому слои испытывают простое растяжение или сжатие. Действуют только нормальные напряжения. Поперечные размеры сечений не меняются. Продольная ось бруса после деформации изгиба искривляется и образует дугу окружности радиуса р (рис. 32.16). Материал подчиняется закону Гука. Можно заметить, что слои, расположенные выше продольной оси, растянуты, расположенные ниже оси — сжаты (рис. 32.16). Так как деформации по высоте сечения меняются непрерывно, имеется Тема 2.6. Изгиб 263 слой, в котором нормальные напряжения а равны нулю; такой слой называют нейтральным слоем (НС). Доказано, нейтральный слой проходит через центр тяжести сечения; р — радиус кривизны нейтрального слоя. Относительное удлинение прямо пропорционально расстоянию слоя до нейтральной оси. Используем закон Гука при растяжении: σ = Еε. Получим зависимость нормального напряжения при изгибе от положения слоя: Формула для расчета нормальных напряжений При изгибе Рассмотрим изогнутый участок бруса dz (рис. 32.2). dN — элементарная продольная сила в точке сечения; dA — площадь элементарной площадки; dm — элементарный момент, образованный силой относительно нейтрального слоя.
264 Лекция 32 Суммарный изгибающий момент сил упругости в сечении
После ряда преобразований получим формулу для определения нормальных напряжений в любом слое поперечного сечения бруса:
где Jx — геометрическая характеристика сечения при изгибе. Эпюра распределения нормальных напряжений при изгибе изображена на рис. 32.3.
По эпюре распределения нормальных напряжений видно, что максимальное напряжение возникает на поверхности. Подставим в формулу напряжения значение у = утах.
J x J x Отношение ---- принято обозначать Wx: Wx = ----. yтах yтах Эта величина называется моментом сопротивления сечения при изгибе, или осевым моментом сопротивления. Размерность — мм3. Wx характеризует влияние формы и размеров сечения на прочность при изгибе. Напряжение на поверхности Тема 2.6. Изгиб 265 Рациональные сечения при изгибе Определим рациональные сечения при изгибе, для этого сравним моменты сопротивления простейших сечений. Осевой момент инерции прямоугольника (рис. 32.4, вывод формулы в лекции 25) равен
Осевой момент сопротивления прямоугольника Сравним сопротивление изгибу двух прямоугольных сечений (рис. 32.5).
Вариант на рис. 32.5b обладает большим сопротивлением изгибу при прочих равных условиях. Осевой момент инерции круга (рис. 32.6) равен
Все необходимые расчетные данные (площади, моменты инерции и сопротивления) стандартных сечений приводятся в таблицах стандартов (Приложение 1). 266 Лекция 32 Для материалов, одинаково работающих на растяжение и сжатие, выбирают сечения, симметричные относительно оси, вокруг которой совершается изгиб (рис. 32.7). Пример Сравним моменты сопротивления двух сечений одинаковой площади: двутавра (рис. 32.7г) и круга (рис. 32.7а). Двутавр № 10 имеет площадь 12 см2, осевой момент инерции 198 см4, момент сопротивления 39, 7 см3. Сопротивление изгибу у двутавровой балки в шесть раз выше, чем у балки круглого сечения. Из этого примера можно сделать вывод: сечения прямоугольные, квадратные, круглые и ромбовидные нерациональны (рис. 32.7а, б).
Для материалов, обладающих разной прочностью при растяжении и сжатии (хрупкие материалы обладают значительно большей прочностью на сжатие, чем на растяжение), выбирают асимметричные сечения тавр, рельс и др. |
Последнее изменение этой страницы: 2019-05-17; Просмотров: 277; Нарушение авторского права страницы