Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Раздел 1 Промышленная микробиология, предмет, задачи и перспективы



 

Промышленная микробиология – это наука о важнейших микробиологических процессах и их практическом применении для получения индустриальным способом ценных продуктов жизнедеятельности микроорганизмов, их биомассы как важнейшего белкового продукта, о получении отдельных полезных веществ, используемых в различных отраслях народного хозяйства и медицине.

Люди выступали в роли биотехнологов тысячи лет: пекли хлеб, варили пиво, делали сыр, другие молочнокислые продукты, используя различные микроорганизмы и даже не подозревая об их существовании. Собственно сам термин " биотехнология" появился в нашем языке не так давно, вместо него употреблялись слова " промышленная микробиология", " техническая биохимия" и др. Вероятно, древнейшим биотехнологическим процессом было брожение. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э. В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение и получение молочнокислых продуктов.

В традиционном, классическом, понимании биотехнология — это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин " новая" биотехнология в противоположность " старой" биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии, новую биопроцессорную технику, и более традиционные формы. Так, обычное производство спирта в процессе брожения - " старая" биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - " новая" биотехнология.

Всплеск  исследований по биотехнологии в мировой науке произошел в 80-х годах, когда новые методологические и мето­дические подходы обеспечили переход к эффективному их ис­пользованию в науке и практике и возникла реальная возможность извлечь из этого максимальный экономический эффект.

В нашей стране значительное расширение научно-исследовательских работ и внедрение их результатов в производство также было достигнуто в 80-е годы. В этот период в стране была разработана и активно осуществлялась первая общенациональная программа по биотехнологии, были созданы межведомственные биотехнологические центры, подготовлены квалифицированные кадры специалистов-биотехнологов, организованы биотехнологические лаборатории и кафедры в научно-исследовательских учреждениях и вузах.

Однако в дальнейшем внимание к проблемам биотехнологии в стране ослабло, а их финансирование сокращено. В результате развитие биотехнологических исследований и их практическое использование в России замедлилось, что привело к отставанию от мирового уровня, особенно в области генетической инженерии.

Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл. Современная биотехнология — это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения.

В рамках биотехнологии можно выделить 3 основных части:

1. Промышленная (техническая микробиология, промышленная биотехнология), где рассматриваются общие принципы осуществления биотехнологических процессов, происходит знакомство с основными объектами и сферами применения биотехнологии, рядом крупномасштабных промышленных биотехнологических производств, использующих микроорганизмы.

2. Клеточная инженерия. Основная цель этого раздела – знакомство с методами ведения культур клеток и практическим использованием этих объектов. В рамках этого раздела выделяют культивирование растительных клеток и методы культивирования животных клеток, так как подходы к культивированию этих объектов различаются в силу их принципиальных биологических различий. Клеточная биотехнология обеспечила ускоренное получение новых важных форм и линий растений и животных, используемых в селекции на устойчивость, продуктивность и качество; размножение ценных генотипов, получение ценных биологических препаратов пищевого, кормового и медицинского назначения

3. Генная инженерия. Высшим достижением современной биотехнологии является генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать коренные задачи селекции биологических объектов на устойчивость, высокую продуктивность и качество продукции при оздоровлении экологической обстановки во всех видах производств. Однако для достижения этих целей предстоит преодолеть огромные трудности в повышении эффективности генетической трансформации и прежде всего в идентификации генов, создании их банков клонирования, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, обеспечении высокой экспрессии генов и создании надежных векторных систем. Уже сегодня во многих лабораториях мира, в том числе и в России, с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, получившие коммерческое признание.

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др. Клетки животных и человека также продуцируют ряд биологически активным соединений. Например, клетки гипофиза - липотропин, стимулятор расщепления жиров, и соматотропин - гормон, регулирующий рост.

В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

 

ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ ВОПРОСОВ К РАЗДЕЛУ 1

Какие свойства микроорганизмов обуславливают их использование в практической деятельности человека?

Основные этапы развития промышленной микробиологии?

Перечислите основные отрасли промышленной микробиологии?

В каких отраслях промышленности используются микробиологические процессы?

Как получают высокоактивные штаммы микроорганизмов?

Рекомендуемая литература для самостоятельной работы к разделу 1

1. Банникова Л.А., Королева Н.С., Семенихина В.Д. Микробиологические основы молочного производства. М.: Гелан, 2001.

2.   Бекер М.Е. Биотехнология микробиологического синтеза.- Рига, 1980. 5.  

3.   Биотехнология / Под ред. А.А. Бабаева.- М.: Наука, 1984.- 1-8 вып.

4.   Воробьева Л.И. Промышленная микробиология.- М.: МГУ, 1989

5.   Воробьева Л.И. Техническая микробиология.- М.: МГУ, 1987

6. Кантере В.М. Теоретические основы технологии микробиологических производств. – М.: Агропромиздат, 1990. – 271 с.

7. Квеситадзе Г.И., Безбородов А.М. Введение в биотехнологию. – М.: Наука, 2002. – 284 с.

8. Королева Н.С. Техническая микробиология цельномолочных продуктов. М.: Изд-во «Пищевая промышленность», 1975.

9. Яковлев В.И. Технология микробиологического синтеза. – Л.: Химия, 1987. – 272 с.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 1187; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь