Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метрологические характеристики датчиков Холла



Лучшими метрологическими характеристиками обладают преобразователи Холла типа ПХЭ на основе гетероэпитаксиальных структур антимонида индия, которые в зависимости от метрологических характеристик разделяются на классы А, Б и В. Некоторые разновидности этих преобразователей характеризуются очень малым температурным коэффициентом чувствительности (5÷10)· , малым остаточным напряжением (10—70 мкВ), малой погрешностью линейности при магнитных индукциях до 15 Тл и широким диапазоном рабочих температур (от —271,5 до +100°С). Для работы при повышенных температурах (до 127 - 327 °С) наиболее пригодны преобразователи Холла из арсенида галлия, которые имеют от­носительно малые температурные коэффициенты постоянной Холла и удельные сопротивления.

Остаточным напряжением преобразователя Холла называется напряжение, которое возникает между Холловыми электродами при прохождении через преобра­зователь тока в отсутствии магнитного поля.

Причиной остаточного напряжения в первую очередь является расположение Холловых электродов в неэквипотенциальных точках пластины. При наличии температурного градиента между Холловыми контактами, каждый из которых является соединением медного вывода с полупроводниковым материалом, в цепи возникает термо - ЭДС. При разности температур между контактами 0,1°С возникает термо-ЭДС, равная 10÷100 мкВ. Для уменьшения градиента температур преобразователь следует укреплять на подложке из материала с хорошей теп­лопроводностью. Суммарное остаточное напряжение может составлять от единиц микровольт до десятков милливольт. У серийно выпускаемых преобразователей значения Uост/I лежат в пределах — 0,4 Ом.

Коррекцию остаточного напряжения также можно осуществить при совместном использовании преобразователя Холла и операцион­ного усилителя с дифференциаль­ным входом. Особенно пригодны для этой цели операцион­ные усилители типа К551УД1, ко­торые имеют малый температурный дрейф (менее 1 мкВ/К) и независи­мую цепь коррекции выходного сме­щения, при помощи которой осу­ществляется компенсация остаточ­ного напряжения.

Погрешность нуля, обусловлен­ная дрейфом остаточного напряже­ния, является одной из наиболее трудно устраняемых составляющих погрешности преобразователей Холла. Дрейф главным образом связан с колебаниями температуры преобразователя и наличием градиента температур между его электродами. Одной из причин возникновения градиента температур является эффект Пельтье, который имеет место при питании преобразователя постоянным током.

Погрешность нуля является основной ха­рактеристикой, определяющей применимость преобразователей Холла для измерения слабых магнитных полей.

Погрешность линейности у различных типов преобразователей при изменении магнитной индукции от 0 до 10 Тл составляет 1—10%. Хорошей линейностью характеристик отличаются преобразователи Холла из антимонида индия, у которых погрешность линейности составляет 0,1—1% в диапазоне В=0÷2 Тл и 1% при В=0,1÷10 Тл. Малую погрешность линейности (0,2%) при магнитной индукции до 1 Тл имеют преобразователи из арсенида-фосфида индия (InAsP).

Погрешность от собственного магнитного поля преобразователя. При прохож­дении тока через преобразователь возникает магнитное поле. Если это поле асимметрично, то интегральное по площади пластины значение индукции не будет равна нулю, а составит некоторую величину Bас. Асимметрия поля может иметь место, если обратный провод токового вывода расположен вблизи преобразователя и асим­метрично по отношению к нему. Дополнительная ЭДС Холла, возникающая в результате взаимодей­ствия индукции Вас и тока I, пропорциональна квадра­ту тока I. Если пре­образователь находится на значительном расстоянии от ферромагнитных деталей, то магнитная индукция собственного по­ля преобразователя обычно не превы­шает  Тл. При нахождении пре­образователя вблизи полюсных наконеч­ников индукция этого поля может дости­гать 5· Тл, что приводит к су­щественной погрешности. Основной путь уменьшения влияния собственного магнит­ного поля — правильный монтаж преоб­разователя.

Погрешность направленности обуслов­лена зависимостью выходного сигнала преобразователя Холла от его пространственного расположения по отношению к век­тору магнитной индукции. Напряжение Холла имеет максимальное значение, когда вектор магнитной индукции направлен параллельно магнитной оси преобразователя, указывающей направление наибольшей чувствительности. В идеальном случае маг­нитная ось совпадает с нормалью к плоскости преобразователя.

Вопросы стабильности преобразователей Холла еще недостаточно изучены. По имеющимся данным, нестабильность чувствительности у некоторых типов пре­образователей составляет 0,1 — 1% в год. Существенное влияние на стабильность могут оказать механические напряжения, возникающие в процессе изготовления преобразователя и при его монтаже в датчике, а также температурные деформации. Преобразователи без подложки более стабильны, чем наклеенные на подложку.

Температурная погрешность преобразователей Холла обусловлена зависимо­стью от температуры постоянной Холла, сопротивления преобразователя и остаточ­ного напряжения. Температурный коэффициент чувствительности у лучших типов преобразователей составляет (5÷10)· . Малые значения температурной по­грешности характерны для преобразователей на основе гетероэпитаксильных струк­тур InSb тройного соединения InAs0,8P0,2 (γΘ≤0,0003 ), из арсенида галлия (γΘ≤0,0006 в диапазонах температур 20—300 °С), а также для некоторых типов преобразователей из германия (γΘ≤0,0003 ), предназначенных для работы в относительно узком диапазоне температур.

Если температурные коэффициенты постоянной Холла и сопротивления имеют одинаковые знаки и близки по значению, коррекцию температурной погрешности можно осуществить при питании преобразователя от источника стабильного напря­жения. Такой режим питания целесообразно применять для преобразователей Холла из антимонида индия. Уменьшение температурной погрешности достигается также при применении схем коррекции с использованием терморезисторов. Однако, поскольку напряжение Холла сложным образом зависит от ряда температурно-зависимых параметров, осуществить точную коррекцию температурной по­грешности практически невозможно, особенно для широкого диапазона рабочих температур.

ЭДС Холла сильно зависит от ширины преобразо­вателя b. Так, например, при расположении преобразователя Холла толщиной 100 мкм и шириной 6 мм между двумя ферритовыми наконечниками (μ≈2000 μ0) ЭДС Холла увеличивается в 1,5 раза при изменении частоты магнитного поля от 0 до 1,5 МГц, а сдвиг фазы между ЭДС Холла и магнитной индукцией достигает 57°. При уменьшении ширины преобразователя в два раза (b=3 мм) и неизменных про­чих условиях увеличение ЭДС Холла составляет всего 3%.

При питании преобразователей током высокой частоты имеет место поверхностный эффект, который приводит к уменьшению эффективной толщины преобразователя и к увеличению его чувствительности. Для серийно выпускаемых преобразователей поверхностный эффект мало сказывается при частотах до  Гц. Для работы при более высоких частотах питающего тока необходимо использовать пленочные преобразователи толщиной 5—10 мкм.

Анализ основных метрологических характеристик преобразователей Холла показывает, что основная погрешность большинства приборов, в которых исполь­зуются преобразователи Холла, составляет 0,5—1,0 % и более. Только при приме­нении сложных методов коррекции можно снизить погрешность измерения до 0,1— 0,2 % при работе в узком диапазоне температур.

 

Контрольные вопросы к главе 2

 

1. Какие принципы и критерии используются для классификации физических эффектов?

2. Каким отличительным признаком служит подразделение преобразователей на генераторные и параметрические?

3. Опишите основные причины погрешностей измерения физических величин.

4. В чем заключается суть метода электромеханических аналогий?

5. Какие знаете физические эффекты, обеспечивающие преобразование энергии механического воздействия в электрический сигнал?

6. Объясните механизм генерации зарядов на поверхности пьезокварца при механическом на него воздействии.

7. Приведите примеры использования пироэлектричества в измерительной технике.

8.  Какие знаете термоэлектрические явления? Опишите их физическую природу.

9.  Почему необходимо использовать компенсационные провода для подключения термопар к вторичным измерительным приборам?

10. Укажите основные области практического использования эффекта Холла.

 


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 575; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь