Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Схема управления шаговым двигателем
Схема включения L298N+L297 проста - надо соединить их вместе. Они настолько созданы друг для друга, что в даташите на L298N идет прямой отсыл к L297, а в документации на L297 на L298N. Осталось только подключить микроконтроллер. На вход CW/CCW подаем направление вращения — 0 в одну сторону, 1 — в другую. на вход CLOCK - импульсы. Один импульс — один шаг. вход HALF/FULL задает режим работы — полный шаг/полушаг RESET сбрасывает драйвер в дефолтное состояние ABCD=0101. CONTROL определяет каким образом задается ШИМ, если он в нуле, то ШИМ образуется посредством выходов разрешения INH1 и INH2, а если 1 то через выходы на драйвер ABCD. На вход Vref надо подать напряжение с потенциометра, которое будет определять максимальную перегрузочную способность. 7.5. Принципы управления сервоприводами В качестве приводного мотора в сервомашинках используются коллекторные электродвигатели постоянного тока. На плате управления собрана вся электронная схема, базирующаяся на специализированной микросхеме. Плата соединена с приемником трехпроводным кабелем, который выходит из корпуса сервомашинки через специальное отверстие. В сервомашинках используются коллекторные моторы, как правило, с трехполюсным ротором и возбуждением от постоянного магнита. Встречаются и пятиполюсные роторы, но реже, и в основном, на мощных сервомашинках. Отдельно стоят сервомашинки с coreless-мотором (мотор с полым ротором). Они скоростные и высокоточные. Но и стоят намного дороже. Их применение оправдано, к примеру, в системах с гироскопами. Во многих других случаях все, как обычно, упирается в деньги. Изначально, электроника рулевых машинок строилась на аналоговых элементах. Но с развитием элементной базы появились так называемые " цифровые" сервомашинки, которые содержат в себе микроконтроллер. Благодаря этому стало возможным использовать более сложные алгоритмы управления, улучшающие параметры сервомашинок, а также подстраивать эти параметры программным способом под специфичные условия. Управляющая электроника потребляет незначительный ток: 8-10 мА. По исполнению электронной начинки, рулевые машинки бывают обычными и цифровыми. Цифровые машинки позволяют добиться особенно высокой точности управления. Применяя мощные (цифровые) сервомашинки надо позаботиться о достаточном для их энергопотребления питании бортовой электроники. Для дополнительного повышения точности и скорости отработки, в качестве двигателя в сервомашинках могут применяться моторы с полым ротором. Любые дополнительные опции приводят к росту цены рулевой машинки. Рассмотрим, как работает сервомашинка в первом приближении. На сервомашинку от приемника приходит импульсный сигнал с периодом 20 мс и с длительностью от 0, 8 до 2, 2 мс. Для того чтобы понять, как данный сигнал преобразуется в поворот качалки, мы рассмотрим типовую структурную схему сервомашинки: Схема состоит из генератора опорного импульса (ГОП), к которому подключен потенциометр обратной связи, компаратора (К), устройства выборки-хранения (УВХ) и силового моста, в диагональ которого включен электромотор (М). (Здесь базы транзисторов-ключей объединены условно). Управляющий импульс от приемника приходит на компаратор и одновременно запускает генератор опорного импульса. Длительность опорного импульса зависит от положения потенциометра обратной связи, механически соединенного с выходным валом. В среднем положении качалки длительность равна 1, 5 мс, в крайних положениях - 0, 8 и 2, 2 мс соответственно. Управляющий и опорный импульсы сравниваются компаратором по длительности. Разностный импульс появляется на верхнем, либо нижнем выходах компаратора, в зависимости от того, какой из сравниваемых импульсов длиннее. Длина разностного импульса определяет величину рассогласования между " требуемым" и " имеющимся" положением руля модели. Эта величина измеряется и запоминается в виде постоянного потенциала на время цикла управляющего импульса в устройстве выборки-хранения. (Здесь также дано упрощение работы УВХ. В действительности постоянный потенциал открывает ключи лишь при большом разностном импульсе, а при малых его значениях ключами управляет пропорционально удлиненный разностный импульс). Выходы последнего управляют ключами силового моста. Положение качалки соответствует положению джойстика на передатчике. При этом длительности управляющего и опорного импульсов в сервомашинке равны. На обоих выходах компаратора нули. Они же хранятся в устройстве выборки-хранения. Ключи обоих плеч моста закрыты, мотор обесточен, качалка сохраняет свое положение. При изменении положения джойстика управляющий импульс увеличился. Тогда компаратор на верхнем выводе выдаст разностный импульс. Его величина будет запомнена в УВХ. Верхний выход УВХ откроет 1 и 3 ключи моста. На мотор подано напряжение. Он начнет через редуктор поворачивать качалку и соответственно потенциометр обратной связи так, что длительность опорного импульса начнет возрастать. Такое состояние продлится столько циклов управляющего импульса, пока с его длительностью не сравняется длительность опорного импульса. После этого компаратор закроет ключи моста. Мотор остановится. При перемещении джойстика в другую сторону управляющий импульс становится короче опорного. Разностный импульс появляется на нижнем выводе компаратора и через УВХ отпирает ключи 2 и 4 моста. Мотор начинает крутить через редуктор качалку и потенциометр обратной связи, но уже в другую сторону до тех пор, пока длительности импульсов опять не сравняются. Когда джойстик неподвижен, руль модели, воспринимая нагрузку во время движения, стремится повернуть качалку сервомашинки. При этом изменяется длина опорного импульса, разностный импульс с компаратора через УВХ открывает пару ключей моста так, что мотор передает на редуктор момент, препятствующий повороту качалки внешней силой. Происходит силовое удержание положения качалки. |
Последнее изменение этой страницы: 2019-03-20; Просмотров: 375; Нарушение авторского права страницы