Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Резисторы. Классификация. Конструкция



План:

1. Резисторы

2. Классификация резисторов

3. Конструкция резисторов

Ключевые слова

Резисторы, классификация резисторов, сопротивление, плёночные резисторы, объёмные резисторы, переменные резисторы, подстроечные резисторы, нелинейные резисторы, конструкция резисторов, диэлектрическое основание, резистивный элемент, выводы.

Резисторы.

Резисторы являются компонентами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Они предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Принцип действия резисторов основан на использовании свойства материалов оказывать сопротивление протекающему через них электрическому току. Особенностью резисторов является то, что электрическая энергия в них превращается в тепло, которое рассеивается в окружающую среду.


2.2 Классификация резисторов.

По назначению дискретные резисторы делятся на резисторы общего назначения, прецизионные, высокочастотные, высоковольтные и высокоомные.

По постоянству значения сопротивления резисторы подразделяются на постоянные, переменные и специальные. Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т.д.

Переменные резисторы, в зависимости от назначения, подразделяются на подстроечные и регулировочные. Подстроечные резисторы рассчитаны на однократную настройку аппаратуры. Их подвижная ось обычно выводится под шлиц, в некоторых случаях предусматривается стопорение оси после настройки. Износоустойчивость подстроечных резисторов невелика — 150 –200 поворотов оси. Регулировочные резисторы используются при многократных регулировках аппаратуры, обладают большой износоустойчивостью (до нескольких сот тысяч циклов).

К регулировочным резисторам следует отнести те, чье основное назначе­ние - оперативное регулирование (изменение) эксплуатационных (или "потре­бительских") параметров радиоаппаратуры: громкости и тембра звучания, уровня записи, установки стереобаланса в звукозаписывающей и звуковоспро­изводящей аппаратуре; яркости, контрастности, цветовой насыщенности в телевизорах и т.п.

Для этих целей практически всегда используются потенциометры с выво­димой на лицевую панель аппарата осью необходимой длины или плоской пластиной (в случае "ползунковых" потенциометров) с декоративной ручкой управления.

Регулировочные резисторы по конструктивному исполнению могут быть одиночными, спаренными, сдвоенными, строенными и даже счетверенными (например, отечественные резисторы типа СПЗ-33) с одной общей или двумя (тремя) раздельными концентрическими осями управления. Они могут соче­таться с сетевым или иного назначения выключателем - в свою очередь одно­полюсным или многополюсным.

По виду токопроводящего элемента резисторы делятся на проволочные и непроволочные.

По эксплуатационным характеристикам дискретные резисторы делятся на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т.д.

Резисторы гибридных ИМС изготавливаются в виде резистивных пленок, наносимых на поверхность подложки. Эти резисторы могут быть тонкопленочными (толщина пленки порядка 1 мкм) и толстопленочными (толщина пленки порядка 20 мкм).

Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2.

В зависимости от конкретных условий работы в электронной аппаратуре применяются различные типы резисторов.

Непроволочные тонкослойные постоянные резисторы. У резисторов группы С 1 токопроводящий слой представляет собой пленку пиролитического углерода, а у резисторов группы С2 - пленку сплава металла или оксида металла. Эти резисторы являются резисторами широкого применения с допусками ±5, ±10 или ±20% и мощностью от 0,125 до 2 Вт. Помимо резисторов С1 и С2 к этой категория резисторов относятся резисторы типов МЛТ, МТ и ВС.

Поскольку металл обладает более высокой теплостойкостью, чем углерод, то резисторы С2 при равной мощности имеют меньшие габариты, чем С1. Резисторы С2 обладают более высокой стабильностью при циклических изменениях температуры. Недостатком металлопленочных резисторов является небольшая стойкость к импульсной нагрузке и меньший частотный диапазон, чем у углеродистых. Объясняется это тем, что токопроводящий слой у этих резисторов толще, чем у углеродистых, поэтому увеличивается паразитная емкость между витками резистивной спирали. На основе резисторов С2 создаются также прецизионные резисторы с допусками ±(0,1-1 )% . Прецизионные резисторы имеют большие габариты, чем резисторы общего применения. Это облегчает тепловые режимы и повышает стабильность свойств проводящего слоя.

Композиционные резисторы. У этих резисторов токопроводящий материал получают путем смешивания проводящей компоненты (графита или сажи) со связывающими компонентами, наполнителем, пластификатором и отвердителем. В резисторах группы СЗ полученная композиция наносится на поверхность изоляционного основания, а в резисторах группы С4 спрессовывается в виде объемного цилиндра или параллелепипеда. В зависимости от состава композиционные материалы имеют очень широкий диапазон удельных сопротивлений. Объемные композиционные резисторы С4 имеют прямоугольную форму и предназначены для компоновки на печатных платах. Они обладают высокой теплостойкостью (до 350°С) и имеют небольшие габариты. Недостатком композиционных резисторов является высокий уровень токовых шумов, что объясняется крупнозернистой структурой проводящего материала.

Проволочные постоянные резисторы. Для изготовления этих резисторов используют провода из специальных сплавов, имеющих высокое удельное сопротивление, хорошую теплостойкость и малый температурный коэффициент сопротивления. Эти резисторы обладают очень высокой допустимой мощностью рассеивания (десятки ватт) при относительно небольших размерах, высокой точностью и хорошей температурной стабильностью. Так как резисторы изготавливают путем намотки провода на каркас, то они имеют большую индуктивность и собственную емкость. Для уменьшения индуктивности применяют бифилярную намотку, при которой обмотку резистора выполняют сдвоенным проводом, благодаря чему поля расположенных рядом витков направлены навстречу друг другу и вычитаются. Уменьшение индуктивности достигается также путем намотки на плоский каркас. Недостатком бифилярной намотки является большая собственная емкость. Для получения малой индуктивности и емкости применяют разбивку обмотки на несколько секций, в каждой из которых поочередно меняется направление намотки. Проволочные резисторы значительно дороже тонкопленочных, поэтому применяют их в тех случаях, когда характеристики тонкопленочных резисторов не удовлетворяют предъявляемым требованиям.

Высокочастотные резисторы и резисторы СВЧ. Эти резисторы обладают небольшой собственной индуктивностью и емкостью, что обеспечивается отсутствием спиральной нарезки, но при этом величина сопротивления не превышает 200 - 300 Ом. Однако это не является недостатком, так как на СВЧ высокие номиналы сопротивлений не применяются. В ряде случаев высокочастотные резисторы изготавливаются без проволочных выводов и эмалевого покрытия, что уменьшает паразитную индуктивность и шунтирующее действие диэлектрика. На сверхвысоких частотах применяют резисторы группы С6, способные работать на частотах до 10 ГГц. К категории высокочастотных относятся также резисторы типов: С2-11, С2-34, МОН (маталлоокисные незащищенные) и МОУ - (металлоокисные ультравысокочастотные). На высоких частотах находят применение, кроме того, микропроволочные малогабаритные резисторы типа С5-32 Т, имеющие длину 6 мм и диаметр 2,6 мм, и паразитную индуктивность не более 0,1 мкГн. Эти резисторы имеют мощность 0,125 Вт и номинальные сопротивления от 0,24 до 300 Ом с точностью 0,5, 1,2, и 5%.

Резистоpы с линейной вольт - ампеpной хаpактеpистикой называются линейными pезистоpами. В отличие от аналогичных элементов, напpимеp, ваpистоpов, теpмистоpов, у котоpых вольт - ампеpная хаpактеpистика имеет нелинейный хаpактеp. Pезистоpы с нелинейной вольт - ампеpной хаpактеpистикой называются нелинейными. Чем больше номинальное сопpотивления pезистоpа, тем меньше угол наклона вольт - ампеpной хаpактеpистики к оси абсцисс, тем более полого на гpафике pасполагается вольт - ампеpная хаpактеpистика. Полупроводниковые нелинейные резисторы, в отличие от линейных резисторов, обладают способностью изменять свое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др. Такие резисторы также относятся к категории специальных резисторов.

Варисторы - полупроводниковые резисторы, сопротивление которых зависит от приложенного к ним напряжения. Варисторы изготавливаются путем спекания кристаллов карбида кремния и связующих веществ. В готовой структуре варистора между кристаллами кремния существуют мельчайшие зазоры. При приложении к варистору внешнего напряжения происходит перекрытие этих зазоров, в результате чего сопротивление варистора уменьшается. Типичный вид вольт - амперной характеристики показан на рис. 2.1.


Рисунок 2.1 Вольт - амперная характеристика варистора


Параметрами варистора являются:

- номинальное напряжение Uном;

- номинальный ток Iном:

- статическое сопротивление

- дифференциальное сопротивление

- коэффициент нелинейности

Поскольку сопротивление варисторов значительно изменяется с изменением приложенного напряжения, то они находят применение в качестве регулирующих элементов в устройствах автоматики. В обозначении варисторов содержатся буквы CH ( сопротивление нелинейное ).

Терморезисторы - это полупроводниковые резисторы, сопротивление которых меняется в зависимости от температуры ( рис. 2.2, а )


Рисунок 2.2. Характеристики терморезистора

Вследствие нелинейности температурной характеристики вольт - амперная характеристика (ВАХ) будет также нелинейной (рис. 2.11,б ). При малых токах ВАХ практически линейна (участок ОМ), поскольку мощность, выделяемая в терморезисторе, недостаточна для того, чтобы заметно нагреть его. При больших токах сопротивление резистора уменьшится, что сопровождается уменьшением напряжения на нем.

Параметрами терморезистора являются:

- номинальное сопротивление Rи при T=20oC,

- температурный коэффициент сопротивления TKC,

- максимально допустимая мощность рассеивания Pmax,

- постоянная времени t , численно равная времени, в течение которого температура резистора при перенесении его из воздушной среды с температурой 0o С в воздушную среду с температурой 100o С изменяется на 63%.

Терморезисторы используются в системах измерения и регулирования температуры. В обозначении терморезисторов содержатся буквы СТ.

Фоторезисторы - это полупроводниковые резисторы, сопротивление которых меняется под воздействием света. Они используются в качестве датчиков освещенности в системах телеметрии.

Тензорезисторы — это резисторы, сопротивление которых меняется под влиянием механических воздействий.

Магниторезисторы - это резисторы с резко выраженной зависимостью электрического сопротивления от магнитного поля. Свойства магниторезисторов оцениваются магниторезистивным отношением, которое показывает, во сколько раз изменяется сопротивление магниторезистора при помещении его в магнитное поле с индукцией 0,5Т (или IT).


2.2 Конструкция резисторов

Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т.д. и определяется известным соотношением

 

(2.1)


где - удельное электрическое сопротивление материала,

l - длина резистивного слоя,

s - площадь поперечного сечения резистивного слоя.

В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малую величину и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т.д., имеющие большую величину .

Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления , под которым понимается сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина связана с величиной и легко может быть получена из 2.1, если принять в ней s = w , где w - ширина резистивной пленки, - толщина резистивной пленки.

Тогда

 

(2.2)


где

- удельное поверхностное сопротивление, зависящее от толщины пленки . Если l = w, то R= , причем величина сопротивления не зависит от размеров сторон

На рис.2.3 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.




Рисунок 2.3 Устройство пленочного резистора.


Сопротивление такого резистора определяется соотношением

 

(2.3)


где l - длина резистора (расстояние между контактными колпачками), D - диаметр цилиндрического стержня резистора (расстояние между контактными колпачками), D - диаметр цилиндрического стержня.

Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений (сотни Ом ). Для увеличения сопротивления резистора резистивную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали (рис. 2.4).



Рисунок 2.4 Конструкция пленочного резистора с резистивной пленкой, нанесенной на поверхность керамического цилиндра.


Сопротивление такого резистора определяется соотношением

 

(2.4)


где t - шаг спирали, а - ширина канавки (расстояние между соседними виткамиспирали),

число витков спирали.


Рисунок 2.5. Конструкция объёмного резистора

На рис. 2.5 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1).

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.

Для гибридных ИМС выпускаются микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем токопроводящей композиции. Такие резисторы приклеиваются к контактным площадкам подложек токопроводящим клеем - контактолом.

Конструкции переменных резисторов гораздо сложнее, чем постоянных. На рис. 2.6 представлена конструкция переменного непроволочного резистора круглой формы.


Рис. 2.6 Конструкция переменного резистора.


Он состоит из подвижной и неподвижной частей. Неподвижная часть представляет собой пластмассовый корпус 2, в котором смонтирован токопроводящий элемент 3, имеющий подковообразную форму. Посредством заклепок 6 он крепится к круглому корпусу. Эти заклепки соединены с внешними выводами 4. Подвижная часть представляет собой вращающуюся ось, с торцом которой 7 посредством чеканки соединена изоляционная планка 8, на которой смонтирован подвижный контакт 1 (токосъемник), соединенный с внешним выводом. Угол поворота оси составляет 270° и ограничивается стопором 5.

Существуют и другие конструкции переменных непроволочных резисторов.

Токопроводящий элемент в них бывает тонкослойным металлическим или металооксидным (резисторы типа СП2), пленочным композиционным (резисторы типа СП4).

Переменные резисторы могут иметь разный закон изменения сопротивления в зависимости от угла поворота оси (рис.2.7).


Рисунок 2.7 Закон изменения сопротивления переменных резисторов в зависимости от угла поворота оси


У линейных резисторов (типа А) сопротивление зависит от угла поворота линейно. У логарифмических резисторов (тип Б) сопротивление изменяется по логарифмическому закону, а у резисторов типа В - по обратнологарифмическому. Кроме того, существуют резисторы, у которых сопротивление изменяется по закону синуса (тип И) или косинуса (тип Б).


Рисунок 2.8 Конструкция переменного проволочного резистора с круговым перемещением токосъемника


Некоторые типы переменных резисторов состоят из двух переменных резисторов объединенных в единую конструкцию, в которой токосъемники расположены на общей оси. Существуют переменные резисторы, содержащие выключатель, контакты которого разомкнуты, если ось резистора повернута в крайнее положение при вращении против движения часовой стрелки. При повороте оси по движению часовой стрелки на небольшой угол контакты выключателя замыкаются. Некоторые типы резисторов комплектуются специальными стопорящими устройствами, жестко фиксирующими положение оси. На рис.2.8 показана конструкция переменного проволочного резистора с круговым перемещением токосъемника. В пластмассовом корпусе 7 с помощью цанговой втулки 3 укреплена поворотная ось 2, на которой закреплен изоляционный диск с контактной пружиной (ползуном) 4, скользящей по проводу обмотки 9, - укрепленной на гетинаксовой дугообразной пластине 6. Концы обмотки соединены с выводами 8, а ползун через контактное кольцо соединен с внешним контактным лепестком 10. Положение оси может быть зафиксировано стопорной разрезной гайкой 1, а угол поворота оси ограничен выступами корпуса, в которые упирается планка-ограничитель 5, закрепленная на оси.

Помимо переменных резисторов с круговым перемещением существуют резисторы с прямолинейным перемещением подвижного контакта. В этом случае контактный ползун укрепляется не на поворотной, а на червячной оси.

Выбор типа резистора (постоянного или переменного) для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов.

Каждый из перечисленных регулировочных резисторов может иметь один или несколько дополнительных фиксированных отводов для подключения, например, схем тонкомпенсации или для других целей. Кроме того, любой из них может иметь линейную или нелинейную зависимость изменения сопротив­ления от угла поворота оси (или степени перемещения ползунка)

Резистор нельзя рассматривать как, элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом.

Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.9.









Рисунок 2.9 Эквивалентная схема постоянного резистора


На схеме Rr- сопротивление резистивного элемента,

Rиз сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rk - сопротивление контактов, LR— эквивалентная индуктивность резистивного слоя и выводов резистора, СR - эквивалентная емкость резистора, CB1 и CB2- емкости выводов. Активное сопротивление резистора определяется соотношением

 

 (2.5)


Сопротивление RК имеет существенное значение только для низкоомных резисторов. Сопротивление Rиз практически влияет на общее сопротивление только высокоомных резисторов. Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным.

Относительная частотная погрешность определяется соотношением

 

 (2.6)


где Z - комплексное сопротивление резистора на частоте

На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывается значение обобщенной постоянной времени , которая связана с относительной частной погрешностью сопротивления приближенным уравнением:

 

(2.7)


Частотные свойства непроволочных резисторов значительно лучше, чем проволочных.


Контрольные вопросы.


1.
Что такое резистор?

2.
Назначение резистора?

3.
Применение резисторов?

4.
Классификация резисторов?

5.
Какие резисторы называются постоянными?

6.
Какие резисторы называются переменными?

7.
Что такое нелинейные резисторы?

8.
Какие резисторы называются терморезисторами?

9.
Какие резисторы называются варисторами?

10.
Конструкция резисторов постоянного сопротивления?

11.
Конструкция резисторов переменного сопротивления?


















Лекция №3.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 556; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.057 с.)
Главная | Случайная страница | Обратная связь