Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Трансформаторы. Классификация. Конструкция. Физические основы функционирования. Основные принципы расчета трансформаторов.



 

План:

 

1.
Трансформаторы.

2.
Классификация трансформаторов.

3.
Конструкция трансформаторов.

4.
Физические основы функционирования.

5.
Основные принципы расчета трансформаторов.

 

Ключевые слова:

Трансформаторы, трансформаторы питания, согласующие трансформаторы, импульсные трансформаторы, магнитопроводы, магнитный поток, напряженность магнитного поля, первичное и вторичное напряжение, расчет потерь, тепловой режим трансформатора, температура нагрева обмоток, нелинейные искажения.


7.1 Трансформаторы.

Трансформаторами называются электромагнитные устройства, имеющие две или большее число индуктивно-связанных обмоток и предназначенные для изменения величины переменного напряжения (тока). Трансформатор состоит из ферромагнитного магнитопро-вода (сердечника) и расположенных на нем обмоток. Обмотка, подключаемая к источнику преобразуемого напряжения, называется первичной, а обмотки, к которым подключены потребители электрической энергии, - вторичными.


2.
Классификация трансформаторов.


В зависимости от назначения трансформаторы подразделяются на трансформаторы питания, согласующие и импульсные.

Трансформаторы питания применяются в блоках питания радиоустройств и служат для получения переменных напряжений, необходимых для нормального функционирования аппаратуры. Условно они подразделяются на маломощные (выходная мощность до 1 кВт ) и мощные ( выходная мощность более 1 кВт), низковольтные ( напряжение на обмотках не превышает 1000 В ) и высоковольтные. Кроме того, трансформаторы питания дополнительно классифицируются по частоте преобразуемого напряжения. По конструкции к трансформаторам питания близки дроссели. По существу это однообмоточные трансформаторы, предназначенные для последовательного включения в цепи пульсирующего тока в целях устранения пульсаций этого тока.

Согласующие трансформаторы предназначены для изменения уровня напряжений (токов ) электрических сигналов, несущих полезную информацию. Они позволяют согласовать источник сигналов с нагрузкой при минимальном искажении сигнала. Вместе с активными элементами (транзисторами, лампами) они входят в состав устройств, усиливающих электрические колебания, занимающие широкую полосу частот. Различают входные, межкаскадные и выходные трансформаторы. Входные трансформаторы включаются на входе усилительного устройства и согласуют выходное сопротивление источника сигналов, например микрофона, с входным сопротивлением усилителя. Так как уровень входных сигналов сравнительно невелик, то эти трансформаторы должны быть хорошо защищены от воздействия внешних магнитных полей. Межкаскадные трансформаторы согласуют выходное сопротивление предыдущего каскада с входным сопротивлением последующего. Выходные трансформаторы согласуют выходное сопротивление усилителя с внешней нагрузкой. Эти трансформаторы должны обеспечивать передачу большой мощности от усилителя в нагрузку.

Импульсные трансформаторы предназначены для формирования и трансформации импульсов малой длительности. Основным требованием, предъявляемым к импульсным трансформаторам, является требование малых искажений формы трансформируемого импульса.

Несмотря на различие функций трансформаторов, основные физические процессы, протекающие в них, одни и те же. Поэтому трансформаторы различного схемного назначения имеют однотипную конструкцию.


7.3.Конструкция трансформаторов.

Магнитопроводы служат для обеспечения возможно более полной связи между первичной и вторичной цепями и увеличения магнитного потока.

Выбор материала зависит от назначения и свойств трансформатора. Для трансформаторов питания широкое распространение получили холодно катанные стали марок 3411-3424. В этих сталях при холодной прокатке получается ориентация кристаллов вдоль направления проката, благодаря чему удается получить более высокую индукцию и меньшие потери. Для трансформаторов применяют три типа магнитопроводов: стержневой, броневой и кольцевой. По конструкции броневые сердечники подразделяют на собранные из штампованных пластин и ленточные.

Трансформаторы со стержневым магнитопроводом (рис. 7.1, а и б) имеют неразветвленную магнитную цепь, на двух его стержнях располагают две катушки с обмотками. Такую конструкцию используют обычно для трансформаторов большой и средней мощности, так как наличие двух катушек увеличивает площадь теплоотдачи и улучшает тепловой режим обмоток. Трансформаторы с броневым сердечником (рис.7.1, в и г) имеют разветвленную магнитную цепь, обмотки в этом случае размещаются на одной катушке, располагаемой на центральном стержне магнитопровода. Такие магнитопроводы используют в маломощных трансформаторах.











Рисунок 7.1. Конструкции трансформаторов с различными магнитопроводами.


Пластинчатые магнитопроводы (рис 7.1), а и в ) собирают из отдельных штампованных Ш - образных или П - образных пластин толщиной 0,35-0,5 мм и перемычек. При сборке встык все пластины составляются вместе и соединяются перемычками. Магнитопровод в этом случае состоит из двух частей, что позволяет получить воздушные зазоры в магнитной цепи, необходимые для нормальной работы трансформаторов, у которых через обмотки помимо переменного тока протекает постоянный ток. При сборке внахлест пластины чередуются так, чтобы у соседних пластин разрезы были с разных сторон, что обеспечивает отсутствие воздушного зазора в магнитопроводе. При этом уменьшается его магнитное сопротивление, однако при этом возрастает трудоемкость сборки. Для уменьшения потерь на вихревые токи пластины изолируют друг от друга слоем оксидной пленки (отжигом пластин), лаковым покрытием или склеивающей суспензией.

Ленточные магнитопроводы (рис.7.1, б и г) получают путем навивки ленты трансформаторной стали толщиной 0,1-0,3 мм, после чего “витой сердечник” разрезают и получают два С-образных сердечника, на один из С-образных сердечников устанавливают катушки с обмотками, а затем вставляют второй С-сердечник. Для получения минимального немагнитного зазора в магнитопроводе торцы сердечников склеивают пастой, содержащей ферромагнитный материал. Если необходим зазор, то в месте стыка двух сердечников устанавливают прокладки из бумаги или картона требуемой толщины. В случае броневого ленточного сердечника применяют одну катушку с обмотками и четыре С-образных сердечника. Ленточная конструкция сердечников позволяет механизировать процесс изготовления трансформаторов. При этом трудоемкость процесса установки сердечника в катушку уменьшается, а отходы материалов сокращаются. Достоинством ленточных сердечников является также то, что потери в таких сердечниках меньше, чем в пластинчатых, благодаря чему удается сократить размеры и массу трансформатора. Это происходит потому, что в пластинчатых сердечниках часть магнитных силовых линий проходит перпендикулярно направлению проката, а в ленточных линии поля расположены вдоль направления проката по всей длине магнитопровода.

Трансформаторы на торроидальных сердечниках (рис 7.1, д ) наиболее сложные и дорогие. Основными преимуществами их являются очень незначительная чувствительность к внешним магнитным полям и малая величина потока рассеяния. Обмотки в трансформаторе наматывают равномерно по всему тороиду, что позволяет еще более уменьшить магнитные потоки рассеяния.

Основание, на котором размещаются обмотки трансформатора, называется каркасом. По конструкции каркасы разделяются на две группы: со щечками (рис.7.2,а) и без щечек-гильзы (рис.7.2,6).


Рисунок 7.2. Конструкции каркасов трансформаторов


Размеры отверстий аk и bk в каркасе со щечками должны быть на 0,1-0,2 мм больше, чем размеры соответствующей части магнитопровода, а длина каркаса должна быть на 0,5-1,0 мм меньше высоты окна в магнитопроводе. Это обеспечивает свободную установку каркаса на магнитопровод. Толщина стенок каркаса в зависимости от его размеров составляет от 0,7 до 1,5 мм.

Трансформаторы, в которых каркасы катушек выполнены в виде гильз, обладают лучшими технологическими характеристиками, поскольку гильза значительно проще каркаса со щечками и процесс изготовления гильз лучше поддается процессу механизации.

Укладка провода на каркас осуществляется двумя способами: беспорядочно (в навал) и правильными рядами, виток к витку(рядовая намотка). Укладка внавал возможна только при применении каркаса со щечками. Однако, такая намотка применяется крайне редко, так как при хаотическом расположении витков возможно появление больших напряжений между соседними витками, что ведет к пробою изоляции провода и короткому замыканию.

При использовании гильзы применяется рядовая намотка (рис.7.2,б). Сначала на гильзу 1 наматывается первичная обмотка 2, состоящая из нескольких слоев, разделенных изоляционными прокладками 3. Поверх первичной обмотки накладывается межобмоточная изоляция 4, затем наматывается вторичная обмотка 5, поверх которой накладывается наружная изоляция 6. Чтобы исключить спадание провода с гильзы и замыкание его на магнитопровод, обмотка не должна доходить до края гильзы. Ширина кольцевой изоляции Ьиз обычно составляет 1,2-1,5 мм. Чтобы исключить “сползание” крайних витков, ширина каждого последующего слоя должна быть меньше по отношению к предыдущему на один виток.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 309; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь