Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дефосфорация стали в окислительных условиях. Методика расчета основных технологических параметров.



Фосфор растворяется в железе в значительных количествах. При растворении фосфора выделяется некоторое количество тепла:

;

Фосфор обычно считают вредной примесью в стали, и проведению операции по его удалению уделяется большое внимание.

В основе вредного влияния фосфора лежат два его свой­ства:

1) значительное расширение двухфазной области между линиями ликвидуса и солидуса, вследствие чего при крис­таллизации слитка или отливки возникают сильная первичная ликвация (сегрегация), а также значительное сужение γ-области, что облегчает развитие сегрегации и в твердом состоянии;

2) относительно малая скорость диффузии фосфора в α- и γ- твердых растворах, в результате чего образовавшаяся неоднородность (сегрегация) плохо ликвидируется методами термообработки (особенно в литой стали, не подвергнутой пластической деформации).

Располагающиеся в межзеренном пространстве хрупкие прослойки, богатые фосфором, снижают пластические свойст­ва металла, особенно при низких температурах.

Наиболее вредное влияние фосфора сказывается на стали в присутствии повышенного количества углерода.

В шихту сталеплавильных печей фосфор попадает в основ­ном из чугуна (пустая порода железной руды всегда содер­жит какое-то количество Р2О5, и в процессе доменной плав­ки фосфор восстанавливается).

Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.

Растворенный в металле фосфор может окисляться кисло­родом:

1) содержащимся в газовой фазе

4/5[Р] + О2газ = 2/5(Р205); ΔG° = –619280 + 175 T;

2) содержащимся в оксидах железа шлака

4/5[Р] + 2[ FeO] = 2/5(Р2О5) + 2Реж; ΔG° = –143050 + 66 T;

3) растворенным в металле

4/5[Р] + 2[О] = 2/5(Р2О5); ΔG° = -385220 + 170 T.

Во всех случаях окисление растворенного в металле фос­фора сопровождается выделением тепла. В случае окисления фосфора газообразным кислородом выделяется очень большое количество тепла.

Для некоторых процессов, связанных с переделом фосфо­ристых чугунов (например, томасовского), фосфор является основным "топливом", т.е. элементом, в результате окисле­ния которого происходит нагрев металла.

Знак "плюс" перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повыше­нии температуры могут создаться благоприятные условия для восстановления фосфора. Повышение окисленности шлака бла­гоприятствует процессам окисления фосфора и, наоборот, снижение активности окислов железа в шлаке затрудняет протекание этих процессов.

Приведенные выше данные изменения величины ΔG° получе­ны в случае чистых железистых шлаков. В реальных шлаках всегда содержится какое-то количество SiO2 и других ком­понентов, снижающих активность окислов железа. В резуль­тате оказывается, что при работе под такими шлаками фос­фор, перешедший в шлак при относительно низких температу­рах, при повышении температуры может начать восстанавли­ваться и при обычных температурах сталеварения (> 1500 °С) практически весь перейти обратно в металл.

Таким образом, при относительно низкой температуре фосфор может удаляться с сильно железистыми шлаками. При этом образуются фосфаты железа:

m(FeO) + (Р205) = (FeO)m • (Р2О5) (т > 3).

Могут образовываться также такие фосфаты железа, как, например, (Fe2O3) • (P2O5), (Fe2O3)2 • (Р2О5). Однако при высоких температурах эти соединения непрочны и фосфор мо­жет перейти обратно в металл. Для того, чтобы удалить фосфор из металла и удержать его в шлаке, необходимо сни­жать активность Р2О5 в шлаке. Этого достигают при наведе­нии основного шлака с помощью добавок извести (или извес­тняка). Основная составляющая извести — СаО реагирует с P2O5, образуя прочные соединения типа (СаО)4 • (Р2О5) или (СаО)3 • (Р2О5). При взаимодействии металла со шлаком, содержащим окислы железа и кальция, протекает реакция

2[Р] + 5(FeO) + 4(СаО) = (СаО)4 • (Р2О5) или

2[Р] + 5(FeO) + З(СаО) = (СаО)3 • (Р2О5).

При продувке ванны кислородом какая-то часть железа окисляется и образующиеся окислы железа также при наличии основного шлака взаимодействуют с фосфором. Итоговая реакция может быть записана в виде

2[Р] + 2V202газ + 4(СаО) = (СаО)4 - (Р2О5) или

2[Р] + 2V202газ + З(СаО) = (СаО)3 • (Р2О5).

В ряде случаев для ускорения дефосфорации в металл в струе кислорода вдувают тонкоизмельченную известь или смесь извести и железной руды.

Таким образом при высоких температурах для удаления фосфора из металла необходимо, чтобы шлаки были одновре­менно и окисленные, и высокоосновные. В кислых процессах при работе под кислыми шлаками удалить фосфор в шлак во­обще невозможно (поэтому в кислых процессах шихта должна быть очень чистой). Уменьшить активность (Р2О5) в шлаке и заставить тем самым реакцию удаления фосфора протекать слева направо можно также, прибегая к смене шлака. Шлак, содержащий какое-то количество фосфора, близкое к равно­весному с металлом, удаляют из агрегата (скачивают), а вместо него с помощью добавок, не содержащих фосфор, "на­водят" новый шлак. После такой операции какое-то коли­чество фосфора из металла опять переходит в "новый" шлак, пока не установится состояние, близкое к равновесию. Опе­рацию скачивания шлака и замены его новым шлаком можно проводить несколько раз до тех пор, пока в металле не останется очень мало фосфора. Такой метод используют при необходимости получить очень низкие концентрации фосфора в металле. Обычно же достаточной оказывается однократная смена шлака, а при работе на чистой по фосфору шихте шлак вообще не скачивают (кроме фосфора и других вредных при­месей, в скачиваемом шлаке содержится также определенное количество железа; эти потери железа снижают выход металла).

Таким образом, можно сформулировать основные условия, соблюдение которых позволяет удалять фосфор из металла (проводить дефосфорацию металла). Эти условия состоят в обеспечении:

1) окислительной среды, высокой активности оксидов же­леза в шлаке;

2) достаточно высокой основности шлака;

3) наличия шлаков, содержащих мало фосфора, смены (скачивания) шлака;

4) невысокой температуры.

Если в какой-то момент эти условия не будут соблюдены, может произойти обратное восстановление в металл ранее окислившегося фосфора (рефосфорация). Например, бывают случаи, когда в конце плавки резко снижают окисленность шлака. Если при этом температуры металла и шлака были достаточно высоки и шлаки были жидкоподвижны и активны, то после выпуска плавки в ковш во время разливки шлак будет взаимодействовать с футеровкой ковша. Шамотная фу­теровка ковша, состоящая из SiO2 и А12О3, будет разъе­даться и переходить в шлак (основность CaO/SiO2 при этом, естественно, уменьшится). В результате окисленность нахо­дящегося в контакте с металлом шлака будет мала и одно­временно снизится его основность. Если в шлаке было много фосфора, то фосфор из такого шлака начнет восстанавли­ваться и переходить в металл, и плавка может быть забра­кована. Поэтому даже в тех случаях, когда в конце плавки содержание фосфора в металле невелико, сталевар принимает все меры для того, чтобы избежать возможной рефосфорации.

 


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 474; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь