Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
При исследования корреляции используются графический и аналитический подходы.
Графический анализ начинается с построения корреляционного поля. Корреляционное поле (или диаграмма рассеяния) является графической зависимостью между результатами измерений двух признаков. Для ее построения исходные данные наносят на график, отображая каждую пару значений (xi, yi) в виде точки с координатами xi и yi в прямоугольной системе координат. Визуальный анализ корреляционного поля позволяет сделать предположение о форме и направлении взаимосвязи двух исследуемых показателей. По форме взаимосвязи корреляционные зависимости принято разделять на линейные (см. рис. 1) и нелинейные (см. рис. 2). При линейной зависимости огибающая корреляционного поля близка к эллипсу. Линейная взаимосвязь двух случайных величин состоит в том, что при увеличении одной случайной величины другая случайная величина имеет тенденцию возрастать (или убывать) по линейному закону.
Направление связи является положительным, если увеличение значения одного признака приводит к увеличению значения второго (см. рис. 3) и отрицательным, если увеличение значения одного признака приводит к уменьшению значения второго (см. рис. 4).
Зависимости, имеющие только положительные или только отрицательные направленности, называются монотонными. Коэффициент корреляции Количественная оценка тесноты взаимосвязи двух случайных величин осуществляется с помощью коэффициента корреляции. Вид коэффициента корреляции и, следовательно, алгоритм его вычисления зависят от шкалы, в которой производятся измерения изучаемых показателей и от формы зависимости. Значение коэффициента корреляции может изменяться в диапазоне от -1 до +1: . Абсолютное значение коэффициента корреляции показывает силу взаимосвязи. Чем меньше его абсолютное значение, тем слабее связь. Если он равен нулю, то связь вообще отсутствует. Чем больше значение модуля коэффициента корреляции, тем сильнее связь и тем меньше разброс в значениях при каждом фиксированном значении . Знак коэффициента корреляции определяет направленность взаимосвязи: минус – отрицательная, плюс – положительная (см. рис. 5).
Коэффициент корреляции оценивается по выборке объема п связанных пар наблюдений (xi, yi) из совместной генеральной совокупности X и Y. Существует несколько типов коэффициентов корреляции, применение которых зависит от измерения (способа шкалирования) величин X и Y. Для оценки степени взаимосвязи величин X и Y, измеренных в количественных шкалах, используется коэффициент линейной корреляции (коэффициент Пирсона), предполагающий, что выборки X и Y распределены по нормальному закону. Коэффициент корреляции — параметр, который характеризует степень линейной взаимосвязи между двумя выборками, рассчитывается по формуле: Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость) до 1 (строгая прямая пропорциональная зависимость). При значении 0 линейной зависимости между двумя выборками нет.
ЛИНЕЙНЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ (КОЭФФИЦИЕНТ ПИРСОНА) Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами. Пусть даны две выборки коэффициент корреляции Пирсона рассчитывается по формуле: где – выборочные средние и , – выборочные дисперсии, . Коэффициент корреляции Пирсона называют также теснотой линейной связи: § линейно зависимы, § линейно независимы
|
Последнее изменение этой страницы: 2019-04-09; Просмотров: 510; Нарушение авторского права страницы