Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Термическая резка металлов
Под термической резкой металлов подразумеваются процессы, при которых металл в зоне реза нагревается до высоких температур и удаляется из полости реза в расплавленном жидком виде расплавленных шлаков и окислов. Для термической резки пользуются оборудованием, аппаратурой и материалами, сходными с применяемыми в процессах сварки металлов. Поэтому во многих случаях целесообразно рассматривать термическую резку вместе со сваркой, хотя цели этих двух процессов противоположны. В процессе резки металл может удаляться из полости реза чисто термическим процессом, он расплавляется и вытекает. Но наиболее важный для техники металл - железо - легко окисляется, а в чистом кислороде может гореть подобно тому, как магний горит на воздухе; в результате металл превращается в окислы и шлаки, удаляемые из полости реза. В одних процессах резки преобладает термический процесс, в других - химический, но всегда оба эти процесса действуют совместно; в продуктах, удаляемых из полости реза, всегда можно обнаружить как металлическое железо, так и его окислы, Термическая резка выполняется разными способами; наиболее важный и изученный способ – это кислородная резка, основанная на использовании химической реакции сгорания железа в кислороде. Более новый способ плазменной резки основан на использовании высокотемпературной плазменной струи, он быстро развивается и уже имеет промышленное значение. В перспективе могут найти применение струя фтора и световой луч, обычный и усиленный лазером. Газокислородная резка. Газокислородная резка основана на способности железа сгорать в струе чистого кислорода с выделением значительного количества тепла по реакции 3 Fe + 202 = Fe 3 О4,. Выделяемое при горении железа довольно значительное количество тепла оплавляет поверхность металла, и получающийся жидкий металл увлекается в шлак вместе с расплавленными окислами. Количество тепла от сгорания железа при резке в 6 - 8 раз превышает количество тепла, выделяемое подогревательным пламенем резака. Железо или сталь не загораются в кислороде при низких температурах, для начала горения металла в кислороде нужно подогреть металл до 1000 - 1200° С. Настоящая высококачественная кислородная резка металла возможна, лишь в том случае, если металл горит в твердом состоянии. Процесс газокислородной резки можно представить следующим образом (рисунок 6.13). Смесь кислорода с горючим газом 4 выходит из подогревательного мундштука резака 1 и сгорает, образуя подогревательное пламя 5.
Рисунок 6.13. Газокислородная резка Подогревательным пламенем металл нагревается до температуры начала горения, тогда по осевому каналу 2 режущего мундштука подается технически чистый кислород. Режущий кислород попадает на нагретый металл 3 и зажигает его. Начинается горение металла: при этом выделяется значительное количество тепла, которое совместно с подогревательным пламенем разогревает нижележащие слои металла, и горение быстро распространяется в глубину на всю толщину металла, прожигая сквозное отверстие, через которое режущая струя кислорода 6 выходит наружу, пробивая металл. Если перемещать далее резак по прямой или кривой линии с надлежащей скоростью, то сжигание металла будет происходить по этой линии и металл будет разрезаться. Таким образом, кислородная резка складывается из нескольких процессов: подогрева металла, сжигания металла в струе кислорода, выдувания расплавленного шлака из полости реза. Подогревательное пламя не тушат, и оно горит в течение всего процесса резки, так как количество тепла, выделяемого при сжигании железа недостаточно для возмещения всех потерь тепла зоны резки. Если подогревательное пламя потушить, то процесс резки быстро прекращается. Практически указанным условиям удовлетворяет лишь железо и его технические сплавы - стали. Большинство других металлов, применяемых в технике и строительстве, не удовлетворяет указанным условиям и не поддается кислородной резке. Для резки необходим чистый кислород; даже незначительное количество примесей заметно снижает скорость резки и сильно повышает расход кислорода. В качестве горючего для подогревательного пламени при кислородной резке может быть использован любой горючий газ, а также жидкие горючее - бензин, бензол, керосин и т. д. Газокислородные резаки. В газокислородном резаке конструктивно объединены подогревательная и собственно режущая части. Подогревательная часть газокислородного резака по принципу устройства, конструкции и методам расчета аналогична сварочным горелкам. В зависимости от давления горючего газа подогревательная часть может быть инжекторной или безинжекторной. В промышленности обычно пользуются резаками с инжекторным подогревательным устройством, независимо от давления применяемого горючего газа. Горючие газы для резки. Существует много горючих газов, достаточно калорийных, недефицитных и доступных для широкого промышленного использования. Возможно также использование жидких и даже твердых порошкообразных горючих. Самая высокая температура пламени получается при сжигании ацетилена. Помимо высокой температуры пламени, ацетилен имеет и некоторые другие преимущества. Его легко получить на месте работ из твердого вещества - карбида кальция, удобного для перевозки и хранения. Ацетилено - кислородное пламя легко и удобно регулировать по виду центральной части, так называемого ядра пламени. Но в то же время ацетилен дефицитен, дорог, весьма взрывоопасен. Ацетилено - кислородное пламя в наиболее горячей части имеет температуру около 3100—3200° С. Ни один другой горючий промышленный газ не может дать температуру выше 2500—2700° С. Схема ацитиленово - кислородного резака приведена на рисунке 6.14. 1- ацетиленовый ниппель, 2-рукоятка, 3-корпус, 4-ацетиленовый вентиль, 5-инжектор, 6-накидная гайка, 7-камера смешения, 8-трубка подачи горячей смеси, 9-голова резака, 10-наружный мундштук, 11-внутренний мундштук, 14-трубка режущего кислорода, 13-вентиль режущего кислорода, 14-вентиль подогревающего кислорода, 15-трубка режущего кислорода, 16-кислородный ниппель Рисунок 6-14 -Схема резака для ацетиленово-кислородной резки. Правила обращения с резаками. Правила обращения с резаками сводятся к следующему. Перед началом работы резаком необходимо проверить все его соединения на плотность и исправность инжектора. Проверка работы инжектора производится так же, как это описано для горелки. Для проверки плотности соединений поступают следующим образом. Выходные отверстия в мундштуке заглушают, закрывают ацетиленовый вентиль, присоединяют к кислородному ниппелю шланг, по которому в каналы резака подается кислород или воздух под давлением 10 кг/см2 —для проверки кислородных каналов и 3 кг/см2 — для проверки каналов горючего и горючей смеси. Затем резак погружают в воду. Наличие неплотностей обнаруживается по выходящим через них пузырькам газа. Зажигание резака производят в такой последовательности. Открывают немного вентиль для подогревающего кислорода и создают разрежение в ацетиленовых каналах. Затем открывают ацетиленовый вентиль и поджигают горючую смесь, выходящую из мундштука. Далее необходимо отрегулировать подогревательное пламя резака с помощью соответствующих вентилей, после чего пустить режущий кислород. Струя режущего кислорода должна располагаться в центре подогревательного пламени. В резаке могут иметь место следующие неисправности: неплотности в соединениях, неправильная установка, износ деталей, засорение каналов, наличие в каналах рисок, заусенцев и др. Если при зажигании горючей смеси в резаке возникают хлопки, то это указывает на пропуск режущего кислорода в месте посадки внутреннего мундштука в головку. В этом случае посадочные поверхности мундштука и головки следует притереть и тем устранить неплотность их соединения. Неправильная установка внутреннего мундштука в головке вызывает отклонение режущей струи от центра подогревающего пламени. При наличии заусенцев и царапин на кромках каналов мундштуков форма подогревательного пламени искажается. Заусенцы и царапины удаляются с помощью шлифовки. Плазменная резка. Плазма представляет собой смесь электрически нейтральных молекул газа и электрически заряженных частиц. Наличие электрически заряженных частиц делает плазму чувствительной к воздействию электрических полей. Плазма электропроводна, и при действии электрических полей в ней возникают электрические токи. Ускорения, сообщаемые заряженным частицам действием электрических и магнитных полей путем соударений, передаются нейтральным частицам газа, и весь объем плазмы может получать направленное движение, образуя струю или факел горячего газа. Электрические поля, воздействуя на плазму, передают энергию заряженным частицам, а через них и всей плазме и могут повышать ее температуру примерно до 20 000° С. Плазменным факелом можно осуществлять различные виды работ сварку, резку, напыление, термообработку и т. д., причем можно обрабатывать как металл, так и неметаллические материалы - стекла, керамику и пр. Плазма может быть получена различными способами, самый простой и распространенный из них - нагрев газа в дуговом разряде. Особенности плазменного нагрева выдвигают особые требования к источнику питания. Для плазменного нагрева желательно постоянство подводимой мощности, IU = const. Питание дуги, создающей плазменный факел, можно производить как постоянным, так и переменным током разной частоты. Плазменная струя имеет несколько регулируемых параметров: сварочный ток и напряжение, угол наклона струи, расход и скорость истечения газа, состав газа, геометрическая форма струи и т. д. Применением соответствующих насадок струе или факелу плазмы можно придать различную форму - цилиндра, конуса, иглообразную, прямого стержня, петли, диска и пр. Разнообразие регулируемых параметров значительно повышает гибкость плазменной струи и повышает ее технологическую ценность. Плазмотроны. Горелку для плазменной резки, или плазменный резак, в настоящее время называет плазмотроном. Плазмотрон для резки отличается от плазменной сварочной горелки размерами, большей электрической мощностью, большим расходом газа, обязательным охлаждением. Наиболее существенные части плазмотрона - электроды и сопло для выхода газа, образующего плазменную струю. До недавнего времени материалом электрода служил исключительно вольфрам. Сейчас для электродов применяют также металл цирконий. Электрод введен в металлический корпус плазмотрона и электрически изолирован от него. С другой стороны к корпусу присоединено сопло с калиброванным выходным обжимающим каналом для плазменной струи. Диаметр выходного канала сопла при средних режимах 3 - 5 мм. Простейшие плазмотроны для ручной резки находят промышленное применение на металлах, не поддающихся газокислородной резке. Газы для плазмотронов. Рабочий газ для плазменной резки имеет первостепенное значение. Плазменная резка была создана и первоначально развивалась на использовании аргона в качестве рабочего газа. Но производительность резки на аргоне сравнительно низка, значительно ниже, чем при других газах. Значительно эффективнее для резки двухатомные газы. Из двухатомных газов большого внимания заслуживает водород, он имеет очень высокую теплоемкость и высокую теплопроводность. Плазменная струя водорода является особенно " горячей", расплавляет и режет металл быстрее, чем другие газы. Одновременно она усиливает износ сопла. Обычно считают, что водородная плазма слишком горяча и применяют водород не в чистом виде, а в смеси с аргоном или азотом. К недостаткам водорода относится и его взрывоопасность в смеси с воздухом. Представляет интерес недефицитный двухатомный азот. Он пригоден для плазменной резки после достаточной очистки, которая делает его уже довольно дорогим газом. В плазмотрон подается два независимых потока газа. Один, меньший, называемый защитным, омывает электрод и защищает его от окисления. В качестве защитного газа применяется обычно аргон. Второй газ, рабочий или плазмообразующий, подается в большем количестве, составляя основную часть общего газового потока, выходящего из плазмотрона. В качестве рабочего газа может применяться дешевый технический азот, иногда воздух. Дуговая резка металлов. Дугой также можно производить резку металла, выплавляя его из полости реза и предоставляя возможность свободно вытекать. Резка может быть произведена как угольным, так и металлическим электродом. Резка угольным электродом на постоянном токе дает лучшие результаты. Применяется нормальная или прямая полярность, т. е. на электроде минус, а на основном металле - плюс. Электроды лучше применять графитные, так как для заданной силы тока они могут быть меньшего диаметра и, таким образом снижать ширину реза; кроме того, графитные электроды медленнее обгорают при работе и расход их значительно меньше по сравнению с расходом электродов из амфорного угля. Основное внимание при резке угольной дугой нужно обращать на возможность быстрого, свободного и удобного вытекания расплавленного металла из полости реза. Для резки угольной дугой применяются токи 400 - 1000 а. При толщинах металла до 12 мм резка угольной дугой может дать достаточно высокую производительность. С увеличением толщины металла производительность быстро падает, и при толщинах свыше 15 мм кислородная резка всегда производительнее. По качеству резки, чистоте кромок и ширине реза дуговой способ значительно уступает кислородному. На больших токах иногда применяют пластинчатые электроды прямоугольного сечения, При резке металлическим электродом для стержня электрода пригодна любая, даже непригодная для сварки проволока из низкоуглеродистой стали; загрязнения металла проволоки не имеют особого значения. Электроды для резки покрываются обмазкой для повышения устойчивости дуги, замедления плавления электрода, изоляции электродного стержня от основного металла при введении электрода в полость реза, а иногда и для ускорения резки за счет окисления основного металла богатыми кислородом окислами, вводимыми в состав электродной обмазки. Воздушно-дуговая резка. В этом способе металл расплавляется электрической дугой с неплавящимся электродом и расплавленный металл выдувается из полости реза потоком сжатого воздуха, подаваемого параллельно электроду. Воздушно-дуговой процесс чаще используется для поверхностной обработки или строжки металла, но может быть использован и для разделительной резки. Окисление выдуваемого металла не очень значительно, и выдуваемые продукты на 80% состоят из металлического железа. Резак для воздушно-дуговой резки представляет собой держатель электродов усиленной конструкции на большие токи; головка держателя имеет сопла для воздуха. Рукоятка держателя приспособлена для присоединения токоподводящего кабеля и воздушного шланга и имеет клапан или другое устройство для пуска и выключения воздуха. Сопла для выхода воздуха имеют форму небольших круговых отверстий или кольцевой щели, охватывающей электрод. Специальные виды термической резки. При обычной кислородной резке, когда режущая струя направлена приблизительно нормально к поверхности металла, прорезается вся его толщина; здесь преследуется цель отделить или отрезать часть металла. Такая резка может быть названа разделительной. Возможен и другой способ использования режущей кислородной струи: она может быть направлена под очень малым углом к поверхности металла, почти параллельно ей. В этом случае струя кислорода выжигает на поверхности металла канавку овального сечения. Подобный метод называется кислородной обработкой, иногда кислородной строжкой или кислородной вырубкой металла. Для кислородной обработки применяются специальные резаки, выпускаемые нашей промышленностью. Резак выбирает канавку шириной 15—50 мм, глубиной 2—20 мм со скоростью 1, 5—10 м/мин, удаляя 1, 0— 4, 5 кг металла в минуту. Расход кислорода равен 200—300 л на 1 кг удаленного металла. Подобным резаком можно выбирать на поверхности металла канавки овального сечения, производя как бы грубую строжку. Повторный проход поверхности резаком со срезкой гребешков канавками уменьшенных размеров дает более чистую обработку. При правильной работе получается чистая и гладкая поверхность канавок. Кислородную обработку можно уподобить механической обработке металла резанием, с заменой резца кислородным резаком Соответственно процессом кислородной обработки можно выполнить многие операции обработки резанием: строжку, обточку, расточку, нарезку грубой резьбы и т. п., когда достаточно грубой черновой обработки. Возможны также механизированные станки для кислородной строжки, обточки и т. п., требующие весьма незначительной мощности для перемещения резака вдоль обрабатываемой поверхности. В настоящее время практическое применение кислородной обработки быстро расширяется. Кислородная обработка нашла довольно широкое применение на металлургических заводах для удаления и вырубки трещин, расслоений и других поверхностных дефектов в обжатых слитках. Удаление производится не только вручную, но и механизированным способом, на специальных машинах для огневой или кислородной зачистки. В этом случае удаляются не отдельные дефекты, а весь наружный слой металла толщиной около 3 мм по всей боковой поверхности слитка. Своеобразным способом является резка кислородным копьем которое представляет собой толстостенную трубку достаточной длины, присоединенную к стволу или рукоятке. Трубка быстро сгорает во время работы и поэтому должна легко и удобно заменяться новой. Внутренний диаметр трубки 2—4 мм, наружный 8—10 мм. При слишком большом внутреннем диаметре в трубку закладывают стальные прутки, уменьшающие свободное сечение трубки и увеличивающие количество сгорающего металла копья. Процесс резки кислородным копьем заключается в прожигании металла струей кислорода, проходящей через стальную трубку, прижатую свободным концом к прожигаемому металлу. Резка производится без использования газового подогревательного пламени, которое заменяется довольно быстрым сгоранием металла самой трубки-копья до 0, 5—1 м/мин. Начинается резка с подогрева места начала реза на металле или, что удобнее, с подогрева конца копья, например сварочной горелкой или дугой. При пропускании кислорода конец копья быстро загорается; дальнейший подогрев не нужен, и можно приступить к резке. Затем копье слегка прижимают к металлу и быстро углубляют в него со скоростью 0, 15—0, 40 м/мин, выжигая отверстие круглого сечения с гладкими стенками. Расплавленный шлак выдувается из отверстия наружу избыточным кислородом и образующимися газами. При значительной глубине прожигаемого отверстия необходимо ставить изделие наклонно, облегчая вытекание шлаков из отверстия под действием силы тяжести. Копьем можно резать но только сталь, но и чугун, цветные металлы, затвердевшие шлаки, бетон, каменные породы и т. п. В подобных случаях резка происходит под тепловым воздействием горящего копья. Диаметр прожигаемого отверстия обычно составляет 20—60 мм, глубина его может быть доведена до 3 м. Давление кислорода на входе копья равно 5—7 ати, расход кислорода 30—60 мя/ч. Расход трубки быстро растет с глубиной отверстия. Кислородное копье находит различное применение, например прожигание отверстий, леток в металлургических печах, шпуров в козлах и стальных блоках для подрыва их взрывчаткой, отверстий в бетоне и т. п. При резке кислородным копьем искры и брызги шлака разбрасываются на несколько метров, что вызывает необходимость защиты рабочих и устранения опасности пожара. Рассмотрим специальный процесс кислородно-флюсовой резки, часто дающий хорошие результаты при резке металлов, для которых обычный метод кислородной резки малопригоден или совсем непригоден. Весьма благоприятным для кислородной резки сочетанием физико-химических свойств обладают технически чистое железо и обычная низкоуглеродистая сталь, которые с успехом режутся кислородом. Однако многие легированные стали плохё поддаются обычной кислородной резке, например все стали о! значительным содержанием хрома, который при горении стали образует тугоплавкую окись хрома Сг203, преграждающую доступ кислорода к поверхности металла. К таким сталям принадлежат хромоникелевые нержавеющие и жаростойкие стали. Для резки чугуна, цветных металлов, для которых применение кислородной резки нецелесообразно, разработан специальный процесс кислородно-флюсовой резки и создана необходимая аппаратура. Сущность этого процесса состоит в том, что вместе с режущим кислородом в зону резки вдувается порошкообразный флюс, вносимый во извещенном состоянии струей режущего кислорода. Флюс, подаваемый в зону резки, состоит главным образом из порошка металлического железа. Сгорая в струе кислорода, железный порошок дает дополнительное количество тепла, расплавляющее тугоплавкие окислы. Окислы железа, образующиеся при сгорании железного порошка, сплавляясь с окислами разрезаемого металла, образуют более легкоплавкий и жидкотекучий шлак, легче сдуваемый с поверхности металла и открывающий к ней доступ кислорода. Для получения флюса к железному порошку примешивают порошкообразные флюсующие добавки, облегчающие плавление и иытекание тугоплавких окислов из полости реза. Применяются также флюсы, и основном состоящие из двуокиси кремния SiO.,, например киарценого песка. Количество флюсующих добавок записит от состава разрезаемого металла. Для кислородно-флюсовой резки необходимо иметь специальную аппаратуру: флюеопитатель и специальный кислородный резак с приспособлениями для подачи флюса. Нормальный флюеопитатель, выпускаемый нашей промышленностью, имеет небольшие размеры и весит около 40 кг. Расход флюса при резке специальных сталей колеблется от 1—2 кг для толщины 10 мм до 10—14 кг для толщины 200 мм на 1 пог. м реза. Флюс расходуется относительно экономнее при больших толщинах. Для малых толщин рекомендуется применять пакетную резку, выбирая оптимальную общую толщину металла. Кислородно-флюсовый способ позволяет успешно резать специальные стали, в том числе нержавеющие и жаростойкие, а также чугун и цветные металлы. Недостатком способа является значительный расход флюса, еще довольно дорогого.
Основы слесарного дела Общие понятия Слесарные работы – это обработка металлов, обычно дополняющая станочную механическую обработку или завершающая изготовление металлических изделий соединением деталей, сборкой машин и механизмов, а также их регулированием. Слесарные работы выполняются с помощью ручного или механизированного слесарного инструмента либо на станках. Слесарные работы различных видов объединяет единая технология выполнения операций, к которым относятся: разметка, рубка, правка и гибка, резка, опиливание, сверление, зенкование и зенкерование, развертывание отверстий, нарезание резьбы, клёпка, шабрение, распиливание и припасовка, притирка и доводка, пайка, лужение и склеивание. На предприятиях серийного производства, где изготовляют однородные детали большими партиями, повышается точность механической обработки и соответственно уменьшается объём слесарных работ, но слесарь выполняет ручные работы, которые не могут быть выполнены машиной. В слесарных мастерских и на участках располагается оборудование индивидуального и общего пользования. К оборудованию индивидуального пользования относятся верстаки с тисками. К оборудованию общего пользования относятся: сверлильные и простые заточные станки (точильно – шлифовальные); опиловочно – зачистные станки; поверочные и разметочные плиты; винтовой пресс; ножовочный станок; рычажные ножницы; плиты для правки и др. Слесарный верстак является одним из основных видов оборудования рабочего места для выполнения ручных работ и представляет собой специальный стол, на котором выполняют слесарные работы. Слесарные верстаки бывают одно и многоместными. Слесарные тиски представляют собой зажимные приспособления для удерживания обрабатываемой детали в нужном положении. В зависимости от характера работы применяют тиски с параллельными губками и ручные тиски. Тиски с параллельными губками и ручным приводом выпускают трёх типов: поворотные, неповоротные, инструментальные со свободным ходом передней губки. Слесарный инструмент для каждой из операций, методы работы с ним буду описаны ниже. Разметка Разметкой называется операция нанесения на обрабатываемую заготовку разметочных линий, определяющих контуры будущей детали или мест, подлежащих обработке. Точность, достигаемая при обычных методах разметки, составляет примерно 0, 5 мм. При точной разметке её можно повысить до сотых долей миллиметра. Плоскостная разметка, выполняемая обычно на поверхности плоских деталей, на полосовом и листовом материале, заключается в нанесении на заготовку контурных параллельных и перпендикулярных линий (рисок), окружностей, дуг, углов, осевых линий, разнообразных геометрических фигур по заданным размерам или контуров различных отверстий по шаблонам. Пространственная разметка больше распространена в машиностроении; по приёмам она существенно отличается от плоскостной. Для выполнения разметки используют разметочные плиты, подкладки, поворотные приспособления, домкраты и др. На разметочной плите устанавливают подлежащие разметке детали и располагают все приспособления и инструмент. Поверхность плиты всегда должна быть сухой и чистой. Процедура проверки заключается в придании поверхности требуемой формы и размеров, после чего на поверхность наноситься легкосъемная краска (например, смесь сажи и масла) и по поверхности проводят поверочной линейкой. Количество пятен, которые оставляет поверочная линейка на плите является критерием точности. Так, часто число пятен краски нормируется на квадрат 24, 5х24, 5мм (1 дюйм) и оно должно быть не менее 20. Прежде чем приступить к разметке, заготовку устанавливают и выверяют на разметочной плите, пользуясь для этого опорными подкладками, призмами и домкратами. Для выполнения плоскостной разметки применяется специальный разметочный инструмент - чертилки и керны Циркули.. Чертилки (иглы) служат для нанесения линий (рисок) на размечаемую поверхность с помощью линейки, угольника или шаблона. Изготовляют чертилки из инструментальной стали У10 или У12. Чертилки должны быть острозаточенными, чем острее чертилки, тем тоньше будет разметочная риска и тем, следовательно, выше точность разметки. Кернер – слесарный инструмент, применяющийся для нанесения углублений (кернов) на предварительно размеченных линиях. Керны изготавливают из инструментальной углеродистой или легированной стали У7А, У8А, 7ХФ или 8ХФ. Различают керны обыкновенные, специальные, пружинные (механические), электрические и др. Обыкновенный кернер представляет собой стольной стержень длиной 100, 125 или 160мм и диаметром соответственно 8, 10 или 12мм; его боёк имеет сферическую поверхность под углом 50…60 градусов, при точной разметке затачивается под углом 30…45 градусов. Разметочные циркули бывают простыми или с дугой, точными и пружинными. Простой циркуль состоит из двух шарнирно соединённых ножек – целых или со вставными иглами; нужный раствор ножек фиксируется винтом. Циркули используют для разметки окружностей и дуг, деления отрезков и окружностей, а также для геометрических построений. Циркулями пользуются и для переноса размеров с измерительных линеек на деталь. Разметочный штангенциркуль предназначен для точной разметки прямых линий и центров, а также для разметки больших диаметров. Рейсмас является основным инструментом для пространственной разметки и служит для нанесения параллельных, вертикальных и горизонтальных линий, а также для проверки установки деталей на плите. Для более точной разметки применяют рейсмас с микрометрическим винтом. Перед разметкой необходимо выполнить следующее: - очистить заготовку от пыли, грязи, окалины, следов коррозии стальной щёткой и др.; - тщательно осмотреть заготовку; при обнаружении раковин, пузырей, трещин и т. п., точно измерить их и, составляя план разметки, принять меры к удалению этих дефектов в процессе дальнейшей обработки (если это возможно); все размеры заготовки должны быть тщательно рассчитаны, чтобы после обработки на поверхности не осталось дефектов; - изучить чертеж размечаемой детали, выяснить её особенности и назначение; уточнить размеры; определить базовые поверхности заготовки, от которых следует откладывать размеры в процессе разметки; при плоскостной разметке базами могут служить обработанные кромки заготовки или осевые линии, которые наносятся в первую очередь; за базы удобно также принимать приливы, бобышки, платики. Разметочные риски наносятся в следующей последовательности: сначала проводят горизонтальные, затем – вертикальные, после этого – наклонные и последними – окружности, дуги и закругления. Прямые риски наносят чертилкой. Чертилку всё время прижимают к линейке, которая должна плотно прилегать к детали. Риски проводят только один раз. Если риска нанесена некачественно её закрашивают, дают красителю высохнуть и проводят риску вновь. Перпендикулярные риски (не в геометрических построениях) наносят с помощью угольника. Параллельные риски наносят с помощью угольника, перемещая его на нужное расстояние. Разметка углов и уклонов производится с помощью транспортировок, штангенциркулей, угломеров. При разметке транспортир устанавливают на заданный угол. Керном называется углубление (лунка), образовавшееся от действия острия (конуса) кернера при ударе по нему молотком. Центры кернеров должны располагаться точно на разметочных линиях чтобы после обработки на поверхности детали оставались половины кернов. Керны для сверления отверстий делают более глубокими, чем другие. Разметка по шаблону обычно применяется при изготовлении больших партий одинаковых по форме и размерам деталей, но иногда этим способом размечают даже малые партии, но сложных изделий. Разметка по образцу отличается тем, что не требуется изготовление шаблона. При этом учитывают износ. Разметка по месту чаще применяют при сборке больших деталей. Одну деталь размечают по другой в таком положении, в каком они должны быть соединены. Разметка карандашом производится по линейке на заготовках из алюминия и дюралюминия. Размечать последние с помощью чертилки не разрешается, так как при нанесении рисок разрушается защитный слой и создаются условия для появления коррозии. Рубка металла Рубкой называется слесарная операция, при которой с помощью режущего (зубила, крейцмейселя и др.) и ударного (слесарного молотка) инструмента с поверхности заготовки (детали) удаляются лишние слои металла или заготовка разрубается на части. В зависимости от назначения обрабатываемой детали рубка может быть чистовой (за один рабочий ход снимают слой металла 0, 5 - 1 мм) и черновой (1, 5 до 2мм.). Точность обработки, достигаемая при рубке составляет 0, 4…1мм. На заготовке различают обрабатываемую и обработанную поверхности, а также поверхность резания. Обрабатываемой называется поверхность, с которой будет сниматься слой материала, а обработанной – поверхность, с которой стружка снята. Поверхность, по которой сходит стружка при резании, называется передней, а противоположная задней. Разрубание листовой стали или вырубание из нее заготовок производится на плите по предварительной разметке. Зубило – это простейший режущий инструмент, в котором форма клина выражена особенно чётко. Чем острее клин, т. е. чем меньше угол, образованный его сторонами, тем меньше усилие потребуется для его углубления в материал. Слесарное зубило представляет собой стальной стержень, изготовленный из инструментальной углеродистой или легированной стали (У7А, У8А, 7ХФ, 8ХФ). Зубило изготовляют длинной 100, 125, 160, 200 мм, ширина рабочей части соответственно равна 5, 10, 16 и 20 мм. Рабочую часть зубила на длине 0, 3…0, 5 закаливают и отпускают. Крейцмейсель отличается от зубила более узкой режущей кромкой и предназначен для вырубания узких канавок, шпоночных пазов и т.п. Для вырубания профильных канавок – полукруглых, двугранных и других – применяют специальные крейцмейсели, называемые канавочниками. Канавочники изготовляют из стали У8А длиной 80, 100, 120, 150, 200, 300 и 350 мм с радиусом закругления 1; 1, 5; 2; 2, 5 и 3 мм. Заточка инструмента на производится на станке вручную. Заточка зубил и крейцмейселя производится на заточном станке. Перед заточкой инструмента подручник устанавливают как можно ближе к шлифовальному кругу. Зазор между подручником и заточным кругом должен быть не более 2…3 мм, чтобы затачиваемый инструмент не мог попасть между кругом и подручником. Правка и гибка металла Правка и рихтовка представляют собой операции по выправке металла, заготовок и деталей, имеющих вмятины, выпучены, волнистость, коробление, искривления и др. Правка и рихтовка имеют одно и тоже назначение, но отличаются приёмами выполнения и применяемыми инструментами и приспособлениями. Металл подвергается правке как в холодном, так и в нагретом состоянии. Выбор способа зависит от прогиба, размеров и материала изделия. Правка выполняется ручным способом на правильной плите или наковальне, машинным - на вальцах или прессах. Правильные плиту изготавливают массивными из стали или чугуна размером 400х400; 750х1000; 1000х1500; 1500х2000; 2000х2000; 1500х3000мм. Рихтовальные бабки используются для правки (рихтовки) закалённых деталей; изготавливают их из стали и закаливают. Для правки применяют молотки с круглым гладким полированным бойком. Для правки закалённых деталей (рихтовки) применяют молотки с радиусным бойком; корпус молотка выполняют из стали У10; масса молотка равна 400…500 г. Молотки со вставными бойками из мягких металлов применяются при правке деталей с окончательно обработанной поверхностью. Гладилки (деревянные или металлические бруски) применяют при правке тонкого листового и полосового металла. При правке металла кривизну деталей проверяют на глаз или по зазору между плитой и деталью. При правке важно правильно выбирать места, по которым следует наносить удары. Правку выполняют на наковальне, правильной плите или надёжных подкладках, исключая возможность соскальзывания с них детали при ударе. Правка полосового металла осуществляется в следующем порядке. Полосу располагают на правильной плите так, чтобы она лежала выпуклостью вверх, соприкасаясь с плитой в двух точках. Удары наносят по выпуклым частям, регулируя их силу в зависимости от толщины полосы и величины кривизны; чем больше искривление и толще полоса, тем сильнее должны быть удары. Результат правки (прямолинейность заготовки) проверяют на глаз, а более точно – на разметочной плите по просвету или наложением линейки на полосу. Правка прутка. После проверки на глаз на выпуклой стороне мелом отмечают границы изгибов. Затем пруток укладывают на плиту или наковальню так, чтобы изогнутая часть находилась выпуклостью вверх и наносят удары молотком. Правка листового металла более сложна, чем предыдущие операции. При правке заготовок с выпучинами выявляют покоробленные участки, устанавливают, где больше выпучен металл. Правку начинают с ближайшего к выпучеине края, по которому наносят один ряд ударов молотком в пределах, указанных зачернёнными кружками. Затем наносят удары по второму краю. После этого по первому краю наносят второй ряд ударов и переходят опять ко второму краю и так до тех пор, пока постепенно не приблизятся к выпучине. Тонкие листы правят лёгкими деревянными молотками – киянками, медными, латунными или свинцовыми молотками, а очень тонкие листы кладут на ровную плиту и выглаживают металлическими или деревянными брусками. Правку валов (диаметром до 30мм) выполняют на ручных прессах с применением призмы. В основном на предприятиях применяют машинную правку на правильных вальцах, прессах и специальных приспособлениях. Гибка – это способ обработки металла давлением, при котором заготовке или её части придаётся изогнутая форма. Слесарная гибка выполняется молотками (лучше с мягкими бойками) в тисках, на плите или с помощью специальных приспособлений. Тонкий листовой металл гнут киянками, изделия из проволоки диаметром до 3мм – плоскогубцами или круглогубцами. Гибке подвергают только пластичный материал. При гибке деталей под прямым углом без закруглений с внутренней стороны припуск на загиб берётся от 0, 5 до 0, 8 толщены материала. Гибка деталей в тисках производится после разметки, вырубки заготовки, правки на плите и опиливания по ширине в заданный размер. По окончании гибки концы детали опиливают в размер и снимают заусеницы с острых рёбер. Сюда относят гибку хомутика, ушка, втулки. Профили, (полосовой, сортовой металл) с разными радиусами кривизны гнут на трёх - и четырёхроликовых станках. Резка металлов и труб Резкой называют отделение частей (заготовок) от сортового или листового металла. Резка выполняется как со снятием стружки, так и без неё. Сущность процесса резки ножницами заключается в отделении частей металла под действием пары режущих ножей. Разрезаемый лист помещают между верхним и нижним ножами. Верхний нож, опускаясь, давит на металл и разрезает его. Ножи изготовляют из сталей У7, У8; боковые поверхности лезвий закалены до HRC 52-58, отшлифованы и остро заточены. Обыкновенные ручные ножницы применяются для резания стальных листов толщиной 0, 5…1мм и листов из цветных металлов толщиной до 1, 5мм. Ручные ножницы изготовляют с прямыми и кривыми режущими лезвиями. По расположению режущей кромки лезвия ножницы делятся на правые (скос на каждой части режущей половины находится с правой стороны); левые – (скос на каждой части режущей половины находится с левой стороны). Длина ножниц равна 200, 250, 320, 360 и 400мм, а режущей части (от острых концов до шарнира) – соответственно 55…65, 70…82, 90…105, 100…120 и 110…130мм. Хорошо заточенные и отрегулированные ножницы должны резать бумагу. Ручные малогабаритные силовые ножницы служат для резки листовой стали толщиной до 2, 5мм и прутков диаметром до 8мм. Ножи ножниц – сменные и прикреплены к рычагам на потайных заклёпках. Эти ножи являются сменными и вставляются в гнездо дисков. Для обрезки болтов (шпилек) во втулках одного из дисков имеется нарезка (несколько ниток), которая предохраняет резьбу болтов при обрезке от смятия. Рычажные ножницы применяются для резания листовой стали толщиной до 4мм, алюминия и латуни – 6мм. Верхний шарнирно закреплённый нож приводится в действие от рычага. Нижний нож неподвижный. Ножи изготавливают из стали У8 и закаливают до твёрдости HRCэ52…60. Углы заострения режущих граней равны 5…85 градусов. Маховые ножницы широко используются для резки листового металла толщиной 1, 5…2, 5мм с пределом прочности 450 -500 МПа (сталь, дюралюминий и т. д.). Этими ножницами режут металл значительной длины. Ножницы с наклонными ножами (гильотинные) позволяют разрезать листовой металл толщиной до 32мм, листы размерами 1000…32000мм, реже – полосовой прокат, а также листовые неметаллические материалы. Ручная ножовка (пила) - инструмент предназначенный для разрезания толстых листов полосового, круглого и профильного металла, а также для прорезания шлицев, пазов обрезки и вырезки заготовок по контуру и других работ. Ножовочное полотно представляет собой тонкую и узкую стальную пластину с двумя отверстиями и с зубьями на одном или обеих рёбрах. Полотна изготовляют из сталей У10А и Х6ВФ, их твёрдость НRC 61-64. В зависимости от назначения ножовочные полотна разделяются на ручные и машинные. Размер (длина) ручного ножовочного полотна определяется по расстоянию между центрами отверстий под штифты, длина полотна для ручной пилы L=250-300мм, высота b=13 и 16мм, толщина h=0, 65 и 0, 8мм. Для резки металлов различной твёрдости углы зубьев ножовочного полотна выполняют следующими: передний угол равен 0-12 градусов; а задний угол зубьев равен 35-40 градусов; угол заострения равен 43-60 градусов. Для резки более твёрдых материалов применяют полотна, у которых угол заострения зубьев больше, для резания мягких материалов угол заострения меньше. Полотна с большим углом заострения более износоустойчивы. При резке ручной ножовкой в работе должно участвовать (одновременно резать металл) не менее двух – трёх зубьев. Во избежание заедания (заклинивания) ножовочного полотна в металле зубья разводят, чтобы ширина разреза, сделанного ножовкой, была много больше толщины полотна. Кроме того, это значительно облегчит работу. Разводка ножовочного полотна должна заканчиваться на расстоянии не более 30мм от торца. Перед работой ножовкой прочно закрепляют разрезаемый материал в тисках (уровень крепления должен соответствовать росту работающего). При длинных пропилах используют ножовочные полотна с крупным шагом зубьев, а при коротких – с мелким. Ножовочное полотно устанавливают в прорези головки так, чтобы зубья были направлены от рукоятки, а не к ней. При этом сначала вставляют конец полотна в неподвижную головку и фиксируют его штифтом, затем вставляют второй конец полотна в прорезь подвижного штыря и также закрепляют штифтом. Степень натяжения полотна проверяют, легко нажимая на него пальцем сбоку; если полотно не прогибается, натяжение достаточно. В процессе резки осуществляется два хода – рабочий, когда ножовка перемещается вперёд от работающего, и холостой, когда к работающему. При холостом ходе на ножовку не нажимают, в результате чего зубья только скользят, а при рабочем ходе обеими руками создают лёгкий нажим так, чтобы ножовка двигалась прямолинейно. |
Последнее изменение этой страницы: 2019-04-09; Просмотров: 497; Нарушение авторского права страницы