Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Сверление, развертывание и зенкование отверстий
Сверлением называется образование снятием стружки отверстий в сплошном материале с помощью режущего инструмента – сверла. Сверление применяют для получения отверстий невысокой степени точности, и для получения отверстий под нарезание резьбы, зенкирование и развёртывания. Сверление применяется: · для получения неответственных отверстий невысокой степени точности и значительной шероховатости, например под крепёжные болты, заклёпки, шпильки и т.д.; · для получения отверстий под нарезание резьбы, развёртывания и зенкерование. Сверление можно получить отверстие с точностью по 10-му, в отдельных случаях – по 11-му квалитету и шероховатостью поверхности Rz 320…80. Свёрла бывают различных видов и изготовляются из быстрорежущих, легированных и углеродистых сталей, а также оснащаются пластинками-наплавками из твёрдых сплавов. Сверло имеет две режущих кромки. Для обработки металлов различной твёрдости, применяют свёрла с различным углом наклона винтовой канавки. Для сверления стали пользуются свёрлами с углом наклона канавки 18…30 градусов, для сверления лёгких и вязких металлов – 40…45 градусов, при обработки алюминия и дюралюминия – 45 градусов. Хвостовики у спиральных свёрл могут быть коническими и цилиндрическими. Конические хвостовики имеют свёрла диаметром 6…80мм. Эти хвостовики образуются конусом Морзе. Шейка сверла, соединяющая рабочую часть с хвостовиком, имеет меньший диаметр, чем диаметр рабочей части. Свёрла бывают оснащённые пластинками из твёрдых сплавов, с винтовыми, прямыми и косыми канавками, а также с отверстиями для подвода охлаждающей жидкости, твёрдосплавных монолитов, комбинированных, центровочных и перовых свёрл. Эти свёрла изготовляют из инструментальных углеродистых сталей У10, У12, У10А и У12А, а чаще – из быстрорежущей стали Р6М5.
Заточка сверл. Заточку выполняют в защитных очках (если на станке нет прозрачного экрана). Угол заточки выбирается в соответствии с обрабатываемы материалом. Качество заточки свёрл проверяют специальными шаблонами с вырезами. Шаблон с тремя вырезами позволяет проверять длину режущей кромки, угол заточки, угол заострения, а также угол наклона поперечной кромки. Для улучшения условий работы свёрл применяют специальные виды заточки. Сверление. Чтобы повысить стойкость режущего инструмента и получить чистую поверхность отверстия, при сверлении металлов и сплавов на станках пользуются охлаждающей жидкостью (см. таблицу 7.1). Таблица 7.1. - Использование жидкостей при сверлении
Сверление жаропрочных сталей осуществляется при обильном охлаждении 5%-ной эмульсией или водным раствором хлористого бария с добавкой 1% нитрата натрия. Сверление лёгких сплавов требует особого внимания. Для обработки алюминиевых сплавов свёрла имеют большие углы при вершине (65…70 градусов), угол наклона винтовых канавок (35…45 градусов), задний угол равен 8…10 градусов. Сверление пластмасс можно производить любыми видами свёрл, однако нужно учитывать их механические свойства. При сверлении одних для охлаждения используют воздух, другие охлаждают 5%-ным раствором эмульсола в воде. Чтобы выходная сторона при сверлении не крошилась, под неё подкладывают жёсткую металлическую опору. При работе на сверлильном станке необходимо соблюдать требования безопасности. Зенкерованием называется процесс обработки зенкерами цилиндрических и конических необработанных отверстий в деталях, полученных литьём, ковкой штамповкой, сверлением, с целью увеличения их диаметра, качества поверхности, повышения точности (уменьшение конусности, овальности). По внешнему виду зенкер напоминает сверло, но имеет больше режущих кромок (три – четыре) и спиральных канавок. Работает зенкер как сверло, совершая вращательное движение вокруг оси, а поступательное - вдоль оси отверстия. Зенкеры изготавливают из быстрорежущей стали; они бывают двух типов – цельные с коническим хвостиком и насадные. Первые для предварительной, а вторые для окончательной обработки отверстий. Зенкование – это процесс обработки специальным инструментом цилиндрических или конических углублений и фасок просверленных отверстий под головки болтов, винтов и заклёпок. Основной особенностью зенковок по сравнению с зенкерами является наличие зубьев на торце и направляющих цапф, которыми зенковки вводятся в просверленное отверстие. Зенковки бывают; цилиндрическая имеющая направляющую цапфу, рабочую часть, состоящую из 4…8 зубьев и хвостовика; коническая имеет угол конуса при вершине 30, 60, 90 и 120 градусов; державка с зенковкой и вращающимся ограничителем позволяет зенковать отверстия на одинаковую глубину, что трудно достичь при пользовании обычными зенковками; ценковки в виде насадных головок, имеют торцевые зубья, используют их для обработки бобышек под шайбы, упорные кольца и гайки. Крепление зенковок и ценковок не отличается от крепления свёрл. Развёртывание – это процесс чистовой обработки отверстий, обеспечивающий точность по 7…9-му квалитетам и шероховатость поверхности Ra 1, 25…0, 63. Развёртки – это инструмент для развёртывания отверстий ручным или машинным способом. Развёртки, применяемые для ручного развёртывания, называются ручными, а для станочного развёртывания – машинными. По форме обрабатываемого отверстия развёртки подразделяют на цилиндрические и конические. Ручные и машинные развёртки состоят из трёх основных частей: рабочей, шейки и хвостовика. У ручных развёрток обратный конус составляет 0, 05…0, 1мм, а у машинных – 0, 04…0, 3мм. Машинные развёртки изготовляют с равномерным распределением зубьев по окружности. Число зубьев развёрток чётное – 6, 8, 10 и т.д. Чем больше зубьев, чем выше качество обработки. Ручные и машинные развёртки выполняют с прямыми (прямозубые) и винтовыми (спиральные) канавками (зубьями). Развёртыванию всегда предшествует сверление и зенкерование отверстий. При развёртывании отверстий необходимо выполнять те же требования безопасности, что и при сверлении. Нарезание резьбы Нарезанием резьбы называется её образование снятием стружки (а также пластическим деформированием) на наружных или внутренних поверхностях заготовок деталей. Резьба бывает наружной и внутренней. Деталь (стержень) с наружной резьбой называется винтом, а с внутренней – гайкой. Эти резьбы изготавливаются на станках или вручную. Основные элементы резьбы представлены на рисунке 7.1. Рисунке 7.1.- Основные элементы резьбы. Профили резьб для различных применений формируются формой режущей части инструмента, с помощью которого нарезается резьба. Различают следующие основные виды резьб: А) цилиндрическая треугольная резьба. Это крепёжная резьба, нарезается на шпильках – гайка, болтах. Б) прямоугольная резьба имеет прямоугольный (квадратный) профиль. Трудна в изготовлении, непрочна и применяется редко. В) трапецеидальная ленточная резьба имеет сечение в виде трапеции с углом профиля, равным 30 градусам. Применяется для передачи движений или больших усилий в металлорежущих станках (ходовые винты, домкраты, прессы и т.д.) Г) упорная резьба имеет профиль в виде неравнобокой трапеции с рабочим углом при вершине, равным 30 градусам. Основания витков закруглены, что обеспечивает в опасном сечении прочный профиль. Д) круглая резьба имеет профиль, образованный двумя дугами, сопряжёнными с небольшими прямолинейными участками, и углом, равным 30 градусам. В машиностроении эта резьба применяется редко, её применяют в соединениях подвергающихся сильному износу (арматура пожарного трубопровода, вагонные стяжки, крюки грузоподъёмных машин и т.д.). Резьба может быть левая и правая, по числу ниток резьбы разделяют на одноходовые и многоходовые. В машиностроении применяют три системы резьб: метрическую, дюймовую и трубную. Метрическая резьба имеет треугольный профиль с плоскосрезанными вершинами, и шаг выражен в миллиметрах, они делятся на резьбы с нормальным и мелким шагом. Маркируются следующим образом: М20 (М - метрическая), число (20- наружный диаметр резьбы в мм.), нормальный шаг берется по таблицам. Для резьб с мелким шагом М20х1, 5 – то же самое с добавлением шага *1, 5 (1, 5- шаг резьбы, мм). Их применяют как крепёжные: с нормальным шагом – при значительных нагрузках и для крепёжных деталей (гаек, болтов, винтов), с мелким шагом – при малых нагрузках и тонких регулировках. Дюймовая резьба имеет треугольный плоскосрезанный профиль с углом 55 градусов (резьба Витворта) или 60 градусов (резьба Селлерса). Все размеры этой резьбы выражаются в дюймах «”» (1”=25, 4мм). Шаг выражается числом ниток (витков) на длине одного дюйма с диаметрами от 3/16 до 4” и числом ниток на 1”, равным 24…3. Трубная цилиндрическая резьба стандартизована, представляет собой мелкую дюймовую резьбу, но в отличие от последней сопрягается без зазоров и имеет закруглённые вершины. Стандартизованы трубные резьбы диаметрами от 1/8 до 6” с числом ниток на одном дюйме от 28 до 11. Резьбы на деталях получают на сверлильных, резьбонарезных и токарных станках, а также накатыванием, т. е. методом пластических деформаций. Инструментом для накатывания резьбы служат накатные плашки, накатные ролики и накатные головки. Иногда резьбу нарезают вручную. Внутреннюю резьбу нарезают метчиками, наружную – плашками, прогонками и другими инструментами. Метчики делят: по назначению – на ручные, машинно-ручные и машинные; в зависимости от профиля нарезаемой резьбы – для метрической, дюймовой и трубной резьб; по конструкции – на цельные, сборные (регулируемые и самовыключающиеся) и специальные. В комплект, состоящий из трёх метчиков, входят черновой, средний и чистовой метчики, рисунок. 7.2.
Рисунок 7.2. - Черновой, средний и чистовой метчики.
Метчик состоит из следующих частей: рабочая часть - винт с продольными канавками служит для нарезания резьб. Рабочая часть состоит из заборной (или режущей) части – она производит основную работу при нарезании и калибрующей (направляющей) части – резьбовая часть метчика, смежная с заборной частью - она направляет метчик в отверстие и калибрует нарезаемое отверстие; хвостовик-стержень служит для закрепления метчика в патроне или воротке. Резьбовые части метчика, ограниченные канавками, называются режущими перьями имеющие форму клина. Режущими кромками называются кромки на режущих перьях метчика. Канавки представляют собой углубления между режущими зубьями (перьями), получающиеся путём удаления части металла, они служат для образования режущих кромок и размещения стружки при нарезании резьбы. По точности нарезаемой резьбы метчики делятся на четыре группы – С, D, Е и Н. Метчики группы С – самые точные, группы Е и Н – менее точные с не шлифованным профилем зубьев. Группа С и D – со шлифованным профилем зубьев; ими нарезают высококлассные резьбы. Машинно-ручные метчики применяют для нарезания метрической, дюймовой и трубной цилиндрической и конической резьб в сквозных и глухих отверстиях всех размеров. При нарезании резьб вручную, режущий инструмент вращают с помощью воротков, устанавливаемых на квадраты хвостовиков. Универсальный вороток предназначен для закрепления плашек с наружным диаметром 20мм, а также всех видов метчиков и развёрток, имеющих хвостовики квадратного сечения со сторонами до 8мм. Для закрепления плашек в корпусе универсального воротка имеется гнездо. Плашка закрепляется винтами. Для нарезания внутренней резьбы, применяют различного вида метчики, а для наружной резьбы применяют плашки различных видов. Отверстия под резьбу, подбор свёрл. При нарезании резьбы материал частично “выдавливается”, поэтому диаметр сверла должен быть несколько больше, чем внутренний диаметр резьбы. Диаметр сверла для сверления отверстий под метрическую и трубную резьбу определяют по справочным таблицам и вычисляют по формуле dc = d - Kc∙ P, где dc – диаметр сверла, мм; Kc – коэффициент, зависящий от разбивки отверстия, берётся по таблицам; d – номинальный диаметр резьбы, мм; обычно Kc=1…1.08; P – шаг резьбы, мм. Смазывание резьбонарезного инструмента. Получение высококачественной резьбы с наименьшими затратами труда обеспечивает смазка следующего состава (%): олеиновая кислота – 78, стеариновая кислота – 17, сера тонкого полома – 5. Инструментом, смазанным этой пастой, легко нарезается резьба в отверстиях деталей, подвергнутых закалке до HRCЭ 38…42. Наружную резьбу нарезают плашками вручную и на станках. В зависимости от конструкции плашки подразделяют на круглые, накатные, раздвижные (призматические). Контроль нарезанной резьбы выполняется с помощью резьбомеров и калибров. Наиболее часто при резьбонарезании встречаются дефекты следующих видов: рваная, тугая, ослабленная, тупая резьба, срыв резьбы и т.д.. Шабрение плоскостей Шабрением называется операция по снятию (соскабливанию) с поверхностей деталей очень тонких частиц металла специальным режущим инструментом – шабером. Цель шабрения – обеспечение плотного прилегания сопрягаемых поверхностей и герметичность соединения. Шабрением обрабатывают прямолинейные и криволинейные поверхности вручную и на станках. За один рабочий ход шабером снимается слой металла толщиной 0, 005…0, 007мм. Шабрением достигается высокая точность (до 30 несущих пятен в квадрате 25х25мм) и шероховатость поверхности не более Ra 0, 32. Шабрение широко применяют в инструментальном производстве как окончательный процесс обработки незакалённых поверхностей. Точность прилегания может быть определена посредством метода «пятен» или щупом на поверочных плитах, которые заранее подготавливаются и проверяются по количеству пятен поверочной линейкой. В случаях, когда точность прилегания определяется для деталей таких как кольца или деталей с различными «вырезами», точность задается числом пятен краски относительно равномерно распределенных по элементу площади поверхности. При шабрении внутренних плоскостей в качестве поверочной, используется поверхность детали, которая по проекту должна находиться соприкасаться с обрабатываемой поверхностью (например, для поверки накладок обжимающих вал, вал служит поверочной поверхностью). Шаберы – металлические стержни различной формы с режущими кромками, изготавливаемые из инструментальных углеродистых сталей У10 и У12А. Режущий конец шабера закаливают без отпуска до твёрдости HRC 64…66. По форме режущей части шаберы делятся на плоские, трёхгранные, фасонные; по числу режущих концов (граней) – на односторонние и двусторонние; по конструкции – на цельные и со вставными пластинками. Плоские шаберы применяют для шабрения плоских поверхностей – открытых пазов, канавок и т. д. Длина плоских двухсторонних шаберов составляет 350…400мм. Ширина шабера для грубого шабрения принимается равной 20…25мм, для точной – 5…10мм. Угол заострения у шаберов для чернового шабрения принимают равным 70…75 градусов, для – чистового 90 градусов. Трёх- и четырёхгранные шаберы принимают для шабрения вогнутых и цилиндрических поверхностей. Трёхгранные шаберы имеют длину 190, 280, 380 и 510мм. Универсальный шабер со сменными режущими пластинками состоит из корпуса, держателя, рукоятки, зажимного винта, сменной режущей пластинки из быстрорежущей стали или твёрдого сплава. Дисковый шабер используют для шабрения широких плоскостей. Диск диаметром 50…60мм и толщиной 3…4мм затачивают на круглошлифовальном станке. Таким образом используется весь диск шабера, что повышает производительность труда. Часто при заточке угол заострения режущей части шабера для стали принимают равным 75…90 градусов. Углы заточки шабера для обработки чугуна и бронзы 75…100 градусов, для чернового шабрения мягких металлов 35…40 градусов. После заточки на лезвии шабера образуются заусеницы и неровности, поэтому лезвие доводят, осуществляя доводку на абразивных брусках зернистостью 90 и ниже. Для точного шабрения и окончательной доводки режущей части шабера применяют пасты ГОИ. В среднем за 7 ч работы шабер доводят 4…6 раз в зависимости от характера шабрения и обрабатываемого материала. Перед шабрением выявляют неровности поверхностей путём их окрашивания смесью машинного масла с лазурью. Лазурь можно заменить сажей, замешанной на смеси автола с керосином. Краску наносят на поверхность плиты тампоном из чистых льняных тряпок, сложенных в несколько слоёв. Удобно проводить окрашивания изготовленным из чистого полотна (холста) мешочком, в который накладывают краску. В небольших углублениях краска будет скапливаться, а в местах более углублённых её не будет. Так возникают белые пятна – наиболее углублённые места, не покрытые краской; тёмные пятна – менее углублённые места, в которых скопилась краска; серые пятна – это наиболее выступающие места, на которые краска ложится тонким слоем. Притирка Притиркой называется обработка деталей, работающих в паре, для обеспечения наилучшего контакта их рабочих поверхностей. Доводка – это чистовая обработка деталей с целью получения точных размеров и малой шероховатости поверхностей. Притирка и доводка осуществляются абразивными порошками или пастами, наносимыми на обрабатываемые поверхности, или специальный инструмент - притир. Припуск на притирку составляет 0, 01…0, 02мм, на доводку – 0, 001…0, 0025мм. Точность притирки – 0, 001…0, 002мм. Доводка обеспечивает точность по 5……6 квалитетам и шероховатость до Rz 0, 05. Притирке подвергают гидравлические пары, клапаны и сёдла в двигателях внутреннего сгорания, рабочие поверхности измерительных инструментов. Точность притирки проверяется методом «пятен краски» или щупом (как указано в технических требованиях на деталь), на заранее подготовленной поверочной плите. Абразивные материалы (абразивы) – это мелкозернистые кристаллические порошкообразные или массивные твёрдые тела, применяемые для механической обработки материалов. Абразивы делятся, на природные и искусственные, и различаемые по твёрдости. Твёрдые естественные абразивные материалы – это минералы, содержащие оксид алюминия (наждак) и оксид кремния (кварц, кремень, алмаз). Твёрдые искусственные абразивы – получают в электропечах, имеют высокую твёрдость и однородность состава. К ним относятся: электрокорунды - нормальный (1А); белый (2А); хромистый (3А); монокорунд (4А); карбиды кремния (карбокорунд) зелёный (6С); чёрный (5С); карбид бора (КБ); кубический нитрид бора (КБН); эльбор (Л); алмаз синтетический (АС). Их применяют при обработке чугуна, хрупких и труднообрабатываемых материалов. Мягкие абразивные материалы – микро порошки М28, М20, М14, М10, М7, М5 и пасты ГОИ. Они применяются для окончательных доводочных работ. Алмазные пасты - природные и синтетические имеют двенадцать зернистостей делящихся на четыре группы имеющих каждая свой цвет: · крупной зернистости (АП100, АП80, АП60) красного цвета; · средней зернистости (АП40, АП28, АП20) зелёного цвета; · мелкой зернистости (АП14, АП10, АП7) голубого цвета; · тонкой зернистости (АП5, АП3 и АП1) жёлтого цвета. Алмазные пасты применяют доля притирки и доводки изделий из твёрдых сплавов, сталей, стекла, рубина, керамики. По консистенции алмазные пасты делятся на твёрдые, мазеобразные и жидкие. Смазывающие материалы для притирки и доводки способствуют ускорению этих процессов, уменьшают шероховатость, а также охлаждают поверхность детали. Для притирки (доводки) стали и чугуна чаще применяют керосин с добавкой 2, 5% олеиновой кислоты и 7% канифоли, что значительно повышает производительность процесса. Доводку выполняют специальным инструментом – притиром, форма которого должна соответствовать форме обрабатываемой поверхности. Плоские притиры представляют собой чугунные плиты, на которых доводят плоскости. Плоский притир для предварительной обработки имеет канавки глубиной и шириной 1…2мм, расположенные на расстоянии 10…15мм, в которых собираются остатки абразивного материала. Притиры для окончательной доводки делают гладкими. Цилиндрические притиры применяют для доводки цилиндрических отверстий. Такие притиры бывают нерегулируемыми и регулируемыми. Регулирование диаметра притира осуществляют гайками. Шаржирование притиров твёрдым абразивным материалом. Существует два способа – прямой и косвенный. При прямом способе абразивный порошок вдавливают в притир до работы. Круглый притир диаметром более 10мм шаржируют на твёрдой стальной плите, на которую насыпан тонким, ровным слоем абразивный порошок. После шаржирования с притира удаляют остаток абразивного порошка волосяной щёткой, притир слегка смазывают и применяют для работы. Косвенный способ заключается в покрытии притира слоем смазки, на которую затем посыпают абразивным порошком. Прибавлять новый абразивный порошок во время работы не следует, так как это ведёт к снижению точности обработки. Притиры изготовляют из чугуна, бронзы, меди, свинца, стекла, фибры и твёрдой древесины, дуб, клён и т.п. Для доводки стальных деталей рекомендуется изготовлять притиры из чугуна средней твёрдости (НВ 100…200), для тонких и длинных притиров используют стали Ст2 и Ст3 (НВ 150…200). Стальные притиры изнашиваются быстрее, чем чугунные, поэтому смазываются пастами ГОИ с целью получения зеркальной поверхности. Для производительной и точной притирки необходимо правильно выбирать и строго дозировать количество абразивных материалов, а также смазки. При притирке необходимо учитывать давление на притираемые детали. Обычно давление при притирке составляет 150…400кПа (1, 5…4кгс/см). При окончательной притирке давление надо уменьшать. Доводка плоских поверхностей обычно производится на неподвижных чугунных доводочных плит. Доводка на плитах даёт очень хорошие результаты, поэтому на них обрабатывают детали, требующие высокую точность обработки (шаблоны, калибры, плитки и т.п.). После доводки поверхности проверяют на краску (на хорошо доведённой поверхности). Плоскость при доводке контролируют лекальной линейкой с точностью 0, 001мм. Следует иметь в виду, что во избежание ошибок при контроле все измерения надо проводить при 20 С. Паяние и лужение Пайка – это процесс получения неразъёмного соединения материалов с нагревом ниже температуры их автономного расплавления путём смачивания, растекания и заполнения зазора между ними расплавленным припоем и сцепления их при кристаллизации шва. Пайку широко применяют в различных отраслях промышленности. К преимуществам пайки относятся: незначительный нагрев соединяющихся частей, что сохраняет структуру и механические свойства металла; сохранения размеров и форм детали; прочность соединения. Современные способы позволяют паять углеродистые, легированные и нержавеющие стали, цветные металлы и их сплавы. Припои обеспечивают качество, прочность и эксплуатационная надёжность паяльного соединения. Припои должны обладать следующими свойствами: · иметь температуру плавления ниже температуры плавления спаиваемых материалов; · обеспечивать достаточно высокую сцепляемость, прочность, пластичность и герметичность паяного соединения; · иметь коэффициент термического расширения, близкий к соответствующему коэффициенту паяемого материала. Легкоплавкие припои широко применяют в различных отраслях промышленности и быта; они представляют собой сплав олова со свинцом. Легкоплавкие припои служат для пайки стали, меди, цинка, свинца, олова и их сплавов серого чугуна, алюминия, керамики, стекла и др. Для получения специальных свойств к оловянно-свинцовым припоям добавляют сурьму, висмут, кадмий, индий, ртуть и другие металлы. При слесарных работах чаще применяют припой ПОС 40. Тугоплавкие припои представляют собой тугоплавкие металлы и сплавы, из них широко применяют медно-цинковые и серебряные. Добавка в небольших количествах бора повышает твёрдость и прочность припоя, но повышает хрупкость паяных швов. Согласно ГОСТу медно-цинковые припои выпускают трёх марок: ПМЦ-38 для паяния латуни с 60…68% меди; ПМЦ-48 – для паяния медных сплавов, меди свыше 68%; ПМЦ-54 – для паяния бронзы, меди, томпака и стали. Медно- цинковые припои плавят при 700…950 градусах. Флюсы применяют для удаления оксида химических веществ. Флюсы улучшают условия смачивания поверхности, растворяя имеющиеся на поверхности паяемого металла и припоя оксидные плёнки. Различают флюсы для мягких и твёрдых припоев, а также для пайки алюминиевых сплавов, нержавеющих сталей и чугуна. Паяльники периодического подогрева подразделяются на угловые, или молотковые, и прямые, или торцовые. Первые применяют наиболее широко. Паяльник представляет собой определённой формы кусок меди, закреплённый на железном стержне с деревянной рукояткой на конце. К паяльникам непрерывного подогрева относят газовые и бензиновые. Электрические паяльники применяют широко, так как они просты по устройству и удобны в обращении. При их работе не образуются вредные газы, и нагреваются быстро – в течение 2…8 мин., что повышает качество пайки. Электрические паяльники бывают прямыми и угловыми. Особую группу составляют паяльники специального назначения: ультразвуковые с генератором ультразвуковой частоты (УП-21); с дуговым обогревом; с вибрирующими устройствами и др. В зависимости от предъявляемых к спаиваемым изделиям требований паяные швы разделяют на три группы: · прочные, обладающие определённой механической прочностью, но не обязательно герметичностью; · плотные – сплошные герметичные швы, не допускающие проникновения какого-либо вещества; · плотнопрочные, обладающие и прочностью, и герметичностью. Пайка мягкими припоями делится на кислотную и бескислотную. При кислотной пайке в качестве флюса употребляют хлористый цинк или техническую соляную кислоту, при бескислотной – флюсы, не содержащие кислот: канифоль, терпентин, стеарин, паяльную пасту и др. Бескислотной пайкой получают чистый шов; после кислотной пайки не исключена возможность появления коррозии. Пайку твёрдыми припоями применяют для получения прочных и термостойких швов и осуществляют следующим образом: · поверхности подгоняют друг к другу припиливанием и тщательно очищают от грязи, оксидных плёнок и жиров механическим или химическим способом; · подогнанные поверхности в месте спая покрывают флюсом; на место спая накладывают кусочки припоя – медные пластинки и закрепляют их мягкой вязальной проволокой; подготовленные детали нагревают паяльной лампой; · когда припой расплавится, деталь снимают с огня и держат в таком положении, чтобы припой не мог стекать со шва; · затем деталь медленно охлаждают (охлаждать в воде деталь с напаянной пластинкой нельзя, так как это ослабит прочность соединения). Покрытие поверхности металлических изделий тонким слоем соответствующего назначению изделий сплава (олова, сплава олова со свинцом и др.) называется лужением. Лужение, как правило, применяют при подготовке деталей к пайке, а также для предохранения изделий от коррозии, окисления. Процесс лужения состоит из подготовки поверхности, приготовления полуды и её нанесения на поверхность. Подготовка поверхности к лужению зависит от требований, предъявляемых к изделиям, и способа нанесения полуды. Перед покрытием оловом поверхность обрабатывают щётками, шлифуют, обезжиривают и травят. Неровности на изделиях удаляют шлифованием абразивными кругами и шкурками. Жировые вещества удаляют венской известью, минеральные масла – бензином, керосином и другими растворителями. Лужение осуществляют двумя способами – погружением в полуду (небольшие изделия) и растиранием (большие изделия). Лужение погружением выполняют в чистой металлической посуде, в которую закладывают, а затем расплавляют полуду, насыпая на поверхность маленькие кусочки древесного угля для предохранения от окисления. Затем изделие промывают в воде и сушат в древесных опилках. Лужение растиранием выполняют, предварительно нанеся на очищенное место волосяной щёткой или паклей хлористый цинк. Затем равномерно нагревают поверхность изделия до температуры плавления полуды, которая наносится от прутка. После этого нагревают и в таком же порядке облуживают другие места. По окончанию лужения охладившееся изделие, промывают водой и сушат. Ремонт запорной арматуры Запорная арматура – это арматура, предназначенная для перекрытия потока рабочей среды с определенной герметичностью. Описание узлов арматуры будет дано в специальной главе ниже. Обслуживание при эксплуатации. Следует производить регулярные осмотры арматуры в зависимости от режима работы системы. При осмотре проверить: общее состояние арматуры; смазку и состояние резьбовых частей штоков и болтовых соединений; герметичность прокладочных соединений и сальниковых уплотнений. При длительной работе задвижки периодически, не реже одного раза в два месяца, производить открывание и закрывание в целях очистки затвора. Для предотвращения попадания между шиберами механических частиц из трубопровода необходимо установить перед задвижкой по направлению потока среды фильтр механической очистки. Конструкцией задвижек предусмотрена возможность ремонта уплотнительных поверхностей путем проточки и притирки. С целью устранения дефектов разборку задвижек нужно производить на отключенном трубопроводе или в снятом положении. Для предотвращения прохода рабочей среды между крышкой и шпинделем в сальниковой камере помещается сальниковая набивка, которая поджимается сальником с помощью двух болтов. Верхнее уплотнение задвижек обеспечивает разгрузку сальникового узла при открытом затворе, затвор состоит из шиберов, между которыми размещен шпиндель со съемным клином. При невозможности добиться устранения протечки в сальниковой камере путем подтяжки откидных болтов сальниковую набивку следует сменить. Запирание задвижек с ручным управлением происходит при вращении маховика, при этом шпиндель через втулку резьбовую получает поступательное движение, передающееся на шиберы. В крайнем положении шиберов при создании на маховике необходимого усилия обеспечивается плотное перекрытие прохода. Требования к чистоте поверхности, после выполнения операций шлифования и притирки, должны соответствовать требованиям нормативно-технической документации и технологии завода-изготовителя. Характеристики трубопроводной арматуры инженерных сетей (задвижек) после проведения ремонта восстанавливаются полностью. Продолжительность службы и исправность задвижек зависят от правильного монтажа и подготовки их к работе, а, также от качества подготовки рабочей среды. Непосредственно перед установкой задвижек на трубопровод произвести расконсервацию внутренних полостей и внешних поверхностей горячей водой с последующей сушкой или растворителем с последующим обдуванием теплым воздухом или протиркой насухо. При установке изделий на трубопровод произвести подтяжку прокладочных соединений и сальникового уплотнения, т.к. в период транспортирования и хранения изделий может произойти разгерметизация. Эти факторы не являются браковочным признаком. Перед монтажом задвижек следует проверить: состояние внутренних полостей задвижек, доступных для визуального осмотра; герметичность затвора. Перед установкой задвижки трубопровод должен быть очищен от грязи, песка, окалины и др. Задвижки должны устанавливаться на трубопроводах для сред и параметров, указанных в паспорте на изделие. Задвижки должны устанавливаться в местах, доступных для осуществления текущего ремонта и осмотра при эксплуатации. Задвижки устанавливаются в любом положении, кроме положения маховиком вниз. При установке задвижек по возможности исключить действие массы трубопровода на болтовые соединения. При монтаже задвижек необходимо, чтобы фланцы на трубопроводе были установлены без перекосов. Непосредственно после монтажа все задвижки должны быть открыты и произведена тщательная продувка трубопровода. Перед пуском установки проверить работу движущихся частей задвижки - полностью открыть или закрыть ее и установить в рабочем положении. При эксплуатации арматуры запрещается: · Эксплуатировать арматуру при отсутствии эксплуатационной документации. · Производить работы по демонтажу и ремонту при наличии давления среды в полости арматуры или приводе. · Производить замену сальниковой набивки, донабивку или подтяжку сальника, подтяжку фланцевых и муфтовых соединений при наличии давления в системе, применять набивки большего или меньшего сечения. Допускается донабивка сальника при наличии в конструкции дублирующего (верхнего) уплотнения. · Снимать арматуру с трубопровода при наличии в ней рабочей среды и разбирать арматуру, не обезвредив все поверхности, соприкасающиеся с агрессивной средой. Использовать арматуру в качестве опоры для трубопровода. · Использовать запорную арматуру в качестве регулирующей. · Класть на арматуру и приводные устройства при монтаже отдельные детали или монтажный инструмент. · Применять для управления арматурой рычаги, удлиняющие плечо рукоятки или маховика, не предусмотренные инструкцией по эксплуатации. · Применять удлинители к ключам для крепежных деталей. · Применять арматуру вместо заглушек при испытаниях на монтаже. |
Последнее изменение этой страницы: 2019-04-09; Просмотров: 525; Нарушение авторского права страницы