Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Природа и типы рецепторов, с которыми взаимодействуют лекарственные вещества.



Рецептор (лат. recipere – получать) – специфические молекулярные компоненты клетки, которые при взаимодействии с лигандами подвергаются конформационным изменениям и за счет воздействия на эффекторные системы клетки изменяют функции ткани и органа в целом. От рецепторов следует отличать места инертного связывания – молекулярные компоненты с которыми могут взаимодействовать биологически активные вещества, не вызывая их конформационных изменений и передачи сигнала на эффекторные системы. Например, эстрогены взаимодействуя с эстрогеновыми рецепторами вызывают изменение транскрипции генов. В то же время, эстрогены могут связываться с секс-глобулином в плазме крови (транспортный белок) но это не приводит к какому-либо биологическому эффекту, поэтому в данном случае секс-глобулин – инертное место связывания для стероидов.

В клетке различают 4 типа рецепторов: три из них являются мембранными (т.е. встроены в мембраны клеток) и один тип – цитоплазматическим (см. схему 1).

· Трансмембранные рецепторы, связанные с ионными каналами. Представляют собой белки, которые формируют в мембране ионный канал. При взаимодействии лиганда с рецепторной субъединицей белка проницаемость ионного канала меняется. К данной группе рецепторов относят:

] Н-холинорецепторы, связанные с Na+-каналами. При взаимодействии с ацетилхолином рецептор открывает натриевый канал и под влиянием тока ионов натрия в клетку возникает деполяризация мембраны и генерируется потенциал действия.

] ГАМКА-рецепторы, которые связаны с Cl--каналами. При взаимодействии с g-аминомасляной кислотой рецептор открывает канал и обеспечивает поступление в клетку ионов хлора. Возникает гиперполяризация мембраны и переход ее в состояние покоя.

· Трансмембранные рецепторы, связанные с G -белками. Эти рецепторы состоят из 3 субъединиц. Рецепторный белок располагается на наружной стороне мембраны. При взаимодействии с лигандом он передает сигнал на внутримембранный G-белок, который за счет энергии ГТФ перемещается к внутренней стороне мембраны и изменяет активность эффекторных белков. Эффекторные белки расположены на внутренней стороне мембраны и представляют собой ферменты, которые образуют «вторичные мессенджеры» – молекулы-посредники, которые передают сигнал в клетку и вызывают развитие ответной реакции. В качестве эффекторных белков выступают:

] Аденилатциклаза – это фермент, который гидролизует АТФ с образованием циклического АМФ (цАМФ). Молекула цАМФ в цитоплазме клетки связывается с зависимой от нее протеинкиназой А (PkA). При этом молекула протеинкиназы распадается на 2 фрагмента: рецепторная субъединица PkA вместе с цАМф поступает в ядро клетки и влияет на транскрипцию генов, а каталитическая субъединица PkA остается в цитоплазме и обеспечивает фосфорилирование белков. Работу аденилатциклазы через Gs-белок стимулируют b-адренорецепторы, Н2-гистаминовые рецепторы, D1-дофаминовые рецепторы. Через Gi-белок работу аденилатциклазы тормозят a2-адренорецепторы, М2-холинорецепторы, m-опиоидные рецепторы.

] Гуанилатциклаза – это фермент, который гидролизует ГТФ с образованием цГМФ. Молекула цГМФ активирует в клетке цГМФ-зависимые протеинкиназы, которые также фосфорилируют белки. С гуанилатциклазой связаны рецепторы предсердного натрийуретического пептида.

Фосфолипаза С – это фермент, который обеспечивает гидролиз фосфатидилинозитол бифосфата (PIP2) до инозитол-трифосфата (IP3) и диацилглицерола (DAG). IP3 воздействует на внутриклеточные кальций-депонирующие органелы, а DAG обеспечивает активацию протеинкиназы С (PkC), которая обеспечивает фосфорилирование внутриклеточных белков. С фосфолипазой С связаны через Gq-белок a1-адренорецепторы, М1 и М3-холинорецепторы, Н1-гистаминовые рецепторы.

· Трансмембранные рецепторы-ферменты. Данный вид рецепторов представлен молекулами, состоящими из 2 субъединиц. Рецепторная субъединица располагается с наружной стороны мембраны, а каталитическая (т.е. обладающая ферментативногй активностью) – прошивает мембрану клетки насквозь. При взаимодействии с лигандом рецепторная субъединица активирует каталитическую часть молекулы. В качестве каталитической субъединицы выступают:

] Тирозинкиназы – ферменты, которые фосфорилируют остатки тирозина в молекулах белков. К такому типу рецепторов относится инсулиновый рецептор.

] Серин-треонинкиназы – ферменты, которые фосфорилируют остатки серина и треонина в молекулах белков. К такому типу относят некоторые из интерлейкиновых рецепторов.

· Цитоплазматические рецепторы. Находятся в цитозоле клетки. Лиганд рецептора (липофильное вещество) проникает через ее мембрану и связывается с рецептором. В покое эти рецепторы экранированы особым белком теплового шока (hsp-белок). При связывании с лигандом рецептор освобождает этот белок и образует пары с другими рецепторами данного семейства. Затем, активированный рецептор поступает в ядро клетки, где связывается с особыми рецепторными последовательностями нуклеотидов ДНК и регулирует экспрессию генов. К данному семейству относятся рецепторы для стероидных гормонов, витаминов А и D, тиреоидных гормонов.

 

 

18. Аффинитет и внутренняя активность лекарственных веществ, как основные параметры их взаимодействия с рецепторами. Определение понятий агонист, антагонист, частичный агонист и агонист-антагонист, примеры.

Способность вещества связываться с рецепторами клетки называется аффинностью[3]. Аффинность обусловлена тем, что пространственная конфигурация лекарства может напоминать конфигурацию эндогенного лиганда этого рецептора. Внутренней активностью называют способность лекарственного вещества вызывать активацию рецептора. В зависимости от величины внутренней активности все лекарственные вещества можно разделить на несколько групп:

[ Агонисты или миметики (от греч. agonistes – соперник; mimeomai - подражать) – вещества, которые связываясь с рецепторами способны их активировать, что вызывает развитие ответа, характерного для данного типа рецепторов. Считают, что внутренняя активность у агонистов равна 1,0 (т.е. они вызывают полный ответ ткани).

[ Антагонисты или блокаторы (от греч. antagonisma – соперничество, противоборство) – это лекарственные вещества, которые связываются с рецепторами, но не вызывают их активации (т.е. их внутренняя активность равна нулю). Антагонисты экранируют циторецепторы и препятствуют развитию ответа при действии эндогенных агонистов.

[ Парциальные агонисты – это вещества, которые связываются с рецепторами и вызывают их активацию, однако, даже если они займут все рецепторы, эти вещества не способны вызвать максимальный ответ для данного типа рецепторов. Т.е. внутренняя активность таких агонистов меньше 1,0 и составляет обычно 0,3-0,6.

Действие парциального агониста будет зависеть от того, с какими рецепторами они взаимодействуют – с покоящимися или с рецепторами, которые уже активированы полными агонистами. Если парциальный агонист взаимодействует с покоящимися рецепторами, то он вызывает их активацию и ответ ткани возрастает с нуля до некоторой величины (»30-60%), т.е. это типичное агонистическое воздействие. Если парциальный агонист действует на ткань, рецепторы которой уже активированы полным агонистом, то он начинает вытеснять агонист из связи с рецептором и занимать его место. Поскольку эффект парциального агониста уступает полному – ответ ткани снижается со 100% до более низкой величины (»30-60%), т.е. это типичное блокирующее действие (см. схему 2).

Иногда выделяют также понятие агонистов-антагонистов. Агонисты-антагонисты – это вещества с низкой аффинностью, которые могут взаимодействовать не с одним, а с несколькими типами рецепторов, при этом они одни рецепторы активируют, а другие блокируют.

 

Можно показать, что чем больше изначальное число активированных рецепторов в ткани, тем будет более выражен блокирующий эффект парциального агониста.

[ Инверсные агонисты – это вещества, которые связываются с рецепторами и вызывают эффект обратный тому, который возникает при действии обычного агониста. Т.е. внутренняя активность реверсных агонистов меньше нуля (-1,0). Инверсные агонисты не следует путать с антагонистами. Антагонист предупреждает эффект агониста, блокируя рецептор, инверсный агонист – вызывает при взаимодействии с рецептором зеркально противоположный эффект. Примером реверсных агонистов могут служить b-карболины. Диазепам является агонистом бензодиазепин-ГАМК рецепторного комплекса и вызывает при активации рецептора развитие седативного и снотворного эффектов. Флумазенил – антагонист этих рецепторов, если его ввести в организм пациента, то воспроизвести снотворное действие диазепама не удается. b-карболины при взаимодействии с бензодиазепиновым рецептором будут вызывать судороги (качественно противоположный снотворному действию диазепама эффект).

 

19. Роль внутриклеточных посредников (цАМФ, цГМФ, ИТФ, ДАГ, Са++), в механизме действия лекарственных веществ.

a. Аденилатциклаза – это фермент, который гидролизует АТФ с образованием циклического АМФ (цАМФ). Молекула цАМФ в цитоплазме клетки связывается с зависимой от нее протеинкиназой А (PkA). При этом молекула протеинкиназы распадается на 2 фрагмента: рецепторная субъединица PkA вместе с цАМф поступает в ядро клетки и влияет на транскрипцию генов, а каталитическая субъединица PkA остается в цитоплазме и обеспечивает фосфорилирование белков. Работу аденилатциклазы через Gs-белок стимулируют b-адренорецепторы, Н2-гистаминовые рецепторы, D1-дофаминовые рецепторы. Через Gi-белок работу аденилатциклазы тормозят a2-адренорецепторы, М2-холинорецепторы, m-опиоидные рецепторы.

b. Гуанилатциклаза – это фермент, который гидролизует ГТФ с образованием цГМФ. Молекула цГМФ активирует в клетке цГМФ-зависимые протеинкиназы, которые также фосфорилируют белки. С гуанилатциклазой связаны рецепторы предсердного натрийуретического пептида.

 

 


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 329; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь