Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Схемы и принципы действия наиболее распространенных ФЭК.



Фотоэлектроколориметр ФЭК служит для определения концентраций окрашенных растворов по поглощению света этими растворами.

1- Лампа; 2- Cветофильт; 3- Кювета для растворов; 4- Фотоприёмник; 5- Преобразователь сигнала (усилитель); 6- Измерительный элемент (гальванометр);

Луч света от источника 1 проходит через светофильтр 2. Полученный монохроматический свет проходит через кювету с раствором 3. Кюветы – сосуды, в которые помещают анализируемый раствор и раствор сравнения. Они представляют собой прямоугольные сосуды с определённым расстоянием между стенками. Для аналитических измерений важен не общий объём раствора, помещённого в кювету, а толщина слоя раствора, которая определяется расстоянием между передней и задней стенками. Кюветы изготавливают из стекла, пропускающего все лучи видимого спектра. Для анализа в ультрафиолетовой области спектра применяют кюветы из кварца, пропускающего не только видимые, но и ультрафиолетовые лучи.

Прошедший через раствор свет, попадает на фотоприёмник 4 – фотодиод, который преобразует энергию световой волны в электрический ток. Сигнал усиливается усилителем - 5 и поступает на измерительный элемент (гальванометр) 6, где находятся две шкалы. На нижней шкале нанесены значения оптической плотности раствора, а на верхней – коэффициента пропускания в процентах.

Принцип измерения коэффициента пропускания и оптической плотности состоит в том, что на фотоприёмник направляют поочерёдно световые потоки – полный и прошедший через анализируемый раствор . Вначале в световой поток помещают кювету с раствором сравнения (растворитель или дистиллированная вода). Изменением чувствительности фотоэлектроколориметра добиваются, чтобы отсчёт по шкале коэффициентов пропускания был равен 100 делениям (или был равен нулю по шкале оптической плотности). Таким образом, полный световой поток условно принимается за 100%. Затем в световой поток помещают кювету с исследуемым раствором. Вследствие поглощения света раствором световой поток ослабляется, и стрелка гальванометра отклоняется от нуля. По показаниям стрелки на шкале определяют значение оптической плотности или коэффициента пропускания исследуемого раствора.


 

12. С какой целью используется калибровочные графики. Методика построения калибровочного графика. Калибровочные графики используются только в физических и физико-химических методах анализа.

Они нужны для того, чтобы учесть все факторы, влияющие на процесс анализа, которые теоретически учесть довольно трудно. К факторам такого рода можно отнести сложную кинетику химической реакции, аномальные константы равновесия, коэффициенты активности т.п. Из этого следует, что легче построить калибровочный график, чем заниматься утомительными поправками к теоретическим прогнозам.

Методика построения калибровочного графика:

Готовятся несколько стандартных растворов (5-6 растворов, реже меньше 4) с известным содержанием определяемого вещества. В каждом стандартном растворе измеряется аналитический сигнал прибором, который используется в данном виде анализа. По результатам измерений строится график в координатах аналитический сигнал – содержание вещества в стандартном растворе. Построенный график является калибровочным. Далее: проводятся измерения в анализируемом растворе, в котором следует узнать концентрацию определяемого вещества. Получив величину аналитического сигнала, с помощью калибровочного графика, находится концентрация, которая соответствует этому сигналу. На этом процедура анализа считается завершенной.



Спектрофотометрия.

Спектрофотометрия – метод исследования и анализа, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. Спектрофотометрия широко применяется для исследования органических и неорганических веществ, для качественного и количественного определения различных веществ, для контроля технологических процессов и окружающей среды.

По типам изучаемых систем спектрофотометрию обычно делят на атомную и молекулярную. Спектры возникают при переходе системы из одного стационарного состояния в другое. При этом система поглощает или испускает энергию в виде кванта, величина которого равна разности энергии двух состояний:

hν = E2 – E1, где h – постоянная Планка; ν – частота кванта света.

Вместо частоты ν используют волновое число ω = ν/с = 1/λ, где с – скорость света; λ – длина волны. Волновое число ω также называют частотой. Тогда частота спектральных линий определяется по формуле:

ω = (Е2 – Е1)/сh

В свою очередь, энергетическое состояние определяется свойствами электронных оболочек атомов и молекул, колебаниями атомных ядер в молекулах и вращением молекул. Различают спектроскопию в инфракрасной (ИК), видимой и ультрафиолетовой (УФ) областях спектра.

Съёмка молекулярных спектров основывается на следующем законе: молекула поглощает электромагнитное излучение только таких длин волн, какие она может излучать. При пропускании пучка лучей, имеющего сплошной спектр, сквозь слой определяемого вещества последнее поглощает лучи определённых длин волн. По спектральному составу света, поглощаемого молекулами данного вещества, можно судить о природе этих молекул. На этом основаны качественная и структурная спектроскопия. Применение спектроскопии в УФ и видимой областях спектра основано на поглощении электромагнитного излучения соединениями, содержащими хромофорные и ауксохромные группы.

Количественный спектральный анализ основана на том, что количество поглощаемой энергии зависит от числа молекул, принимающих участие в этих процессах. Основным законом, на котором основан количественный спектрофотометрических анализ, является закон Бугера-Ламберта-Бера.


 


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 239; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь