Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Нуклеопротеины. Нуклеиновые кислоты: ДНК, РНК. Строение. Функции. Представление об укладке ДНК в хроматине.
Нуклеопротеиды — сложные белки, в состав которых входят нуклеиновые кислоты. Примерами белковых компонентов нуклеопротеидов являются главным образом гистоны и протамины, характеризующиеся низким мол. весом и содержанием аминокислот основного характера (аргинин, лизин, гистидин).Различают дезоксирибонуклеопротеиды (ДНП) — комплексы белков с дезоксирибонуклеиновой кислотой (ДНК) и рибонуклеопротеиды (РНП) — комплексы белков с рибонуклеиновой кислотой (РНК). Нуклеиновые кислоты - высокомолекулярные соединения. Их молекулы имеют нитевидную форму. Днина молекул ДНК в клетках достигает нескольких сантиметров. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Название «нуклеиновые кислоты» отражает тот факт, что локализуются они главным образом в ядре (nucleus — ядро). При специфическом окрашивании на нуклеиновые кислоты ядра бывают очень хорошо видны в световом микроскопе. Выяснение структуры ДНК (дезоксирибонуклеиновой кислоты) — одного из двух существующих типов нуклеиновых кислот — открыло новую эпоху в биологии, так как позволило, наконец, понять, каким образом живые организмы хранят информацию, необходимую для регулирования их жизнедеятельности и каким образом передают эту информацию своему потомству Первый уровень компактизации ДНК - нуклеосомный. Если подвергнуть действию нуклеазы хроматин, то он и ДНК, подвергаются распаду на регулярно повторяющиеся структуры. После нуклеазной обработки из хроматина путем центрифугирования выделяют фракцию частиц со скоростью седиментации 11S. Частицы 11S содержат ДНК около 200 нуклеотидных пар и восемь гистонов. Такая сложная нуклеопротеидная частица получила название Нуклеосомы. В ней гистоны образуют белковую основу-сердцевину, по поверхности которой располагается ДНК. ДНК образуют участок, с белками сердцевины не связанный, — Линкер, Который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Они образуют «бусины», глобулярные образования около 10 нм, сидящие друг за другом на вытянутых молекулах ДНК. Второй уровень компактизации—30 нм фибрилла. ПЕрвый, нуклеосомный, уровень компактизации хроматина играет регуляторную и структурную роль, обеспечивая плотность упаковки ДНК в 6—7 раз. В митотических хромосомах и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 25—30 нм. Выделяют соленоидный тип укладки нуклеосом: нить плотно упакованных нуклеосом диаметром 10 нм образует витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится 6—7 нуклеосом. В результате такой упаковки возникает фибрилла спирального типа с центральной полостью. Хроматин в составе ядер имеет 25-нм фибриллы, которая состоит из сближенных глобул того же размера — Нуклеомеров. Эти нуклеомеры называют сверхбусинами («супербиды»). Основная фибрилла хроматина диаметром 25 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК. В составе нуклеомера образуются два витка нуклеосомной фибриллы, по 4 нуклеосомы в каждом. Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК. Нуклесомный и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков.Петлевые домены ДНК —третий уровень структурной организации хроматина. В высших уровнях организации хроматина специфические белки связываются с особыми участками ДНК, которая в местах связывания образует большие петли, или домены. В некоторых местах есть сгустки конденсированного хроматина, розетковидные образования, состоящие из многих петель 30 нм-фибрилл, соединяющихся в плотном центре. Средний размер розеток достигает 100—150 нм. Розетки фибрилл хроматина—Хромомеры. Каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромомеры связаны друг с другом участками нуклеосомного хроматина. Такая петельно-доменная структура хроматина обеспечивает структурную компактизацию хроматина и организует функциональные единицы хромосом — репликоны и транскрибируемые гены. |
Последнее изменение этой страницы: 2019-04-11; Просмотров: 171; Нарушение авторского права страницы