Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение случайного процесса.



Определение случайного процесса.

Пусть задано множество Ω — множество элементарных исходов и некоторое множество T, являющееся подмножеством множества вещественных чисел, то есть T ⊂ R.  Будем называть случайной функцией вещественную числовую функцию двух аргументов ω ∈ Ω и t ∈ T. Обозначим случайную функцию ξ(w, t). Если аргумент t принимает смысл времени t ≥ 0, то случайную функцию будем называть случайным процессом.

Вероятностные характеристики.

Из определения случайного процесса с независимыми приращениями, приведенного в п.5.1.5, получаем следующее представление процесса

Дисперсия процесса в момент времени представляет монотонно возрастающую функцию, так как при независимых приращениях из (5.31) следует

Используя известные свойства характеристической функции суммы независимых случайных величин (см. п. 3.3.6), запишем -мерную характеристическую функцию процесса с независимыми приращениями

где

Таким образом, характеристическая функция любого порядка случайного процесса с независимыми приращениями определяется его одномерной и двумерной характеристическими функциями.

Однородные процессы с независимыми приращениями.

Случайный процесс с независимыми приращениями называется однородным (иногда — процессом со стационарными независимыми приращениями), если он определен при , причем и распределение приращения совпадает с распределением для всех . Однородный процесс с независимыми приращениями непрерывен по вероятности.

Из (5.31), следует, что однородный процесс с независимыми приращениями можно представить конечной суммой одинаково распределенных случайных величин и, следовательно,

Случайные процессы со скачками в фиксированные моменты времени.

Рассмотрим процесс реализации которого — ступенчатые функции со случайными скачками в фиксированные моменты времени (рис. 5.1). Скачок процесса в один из фиксированных моментов представляет случайную величину . Тогда рассматриваемый процесс можно записать в виде суммы

Этот процесс непрерывен по вероятности при всех значениях i за исключением тех фиксированных моментов времени, где появляются случайные скачки. Если скачки g, представляют совокупностьнезависимых случайных величин, то рассматриваемый процесс является случайным с независимыми приращениями.

Пуассоновский процесс.

Рассматривается последовательность случайных событий, каждое из которых можно представить точкой на оси времени, а всю последовательность событий — потоком случайных точек. Обозначим через число событий (случайных точек), появившихся на интервале (0, t). Предположим, что число событий на интервале не зависит от того, сколько событий и когда происходили до указанного интервала, т. е. отсутствует последействие. Предположим, кроме того, что вероятность появления более одного события на интервале при убывает быстрее, чем (имеет место ординарность), и что вероятность появления одного события на интервале равна .

Тогда - случайный процесс с независимыми приращениями, подчиняемый закону распределения Пуассона

где

и называемый пуассоновским.

При фиксированном значении реализации пуассоновского процесса — неубывающие ступенчатые функции с единичными скачками в случайные моменты времени (рис. 5.2). Пуассоновский процесс — непрерывный по вероятности, что не противоречит возможности скачков в отдельных реализациях.

Характеристические функции пуассоновского процесса и его приращения

из которых следует и общая формула (5.33).

Модель пуассоновского процесса широко используется в естествознании и технике, в теории массового обслуживания, в теории надежности, в ядерной физике и многих других областях.

Белый шум.

Рассмотренные ранее случайные процессы с независимыми приращениями — винеровский, однородный пуассоновский, обобщенный однородный пуассоновский — непрерывны по вероятности, но не дифференцируемы. Производные этих процессов можно рассматривать как обобщенные случайные процессы с независимыми значениями [17], корреляционные функции которых

где

Корреляционная функция (5.57) является по определению корреляционной функцией белого шума —случайного процесса с постоянной на всех частотах интенсивностью спектральной плотности мощности (см. п. 4.4.2).

Таким образом, имеется три класса белых шумов: гауссовский (производная винеровского процесса), пуассоновский и обобщенный пуассоновский (производные однородных пуассоновского и обобщенного пуассоновского процессов).

Марковский процесс - протекающий в системе случайный процесс, который обладает свойством: для каждого момента времени t0 вероятность любого состояния системы в будущем (при t>t0) зависит только от ее состояния в настоящем (при t= t0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).

На практике часто встречаются случайные процессы, которые с той или иной степенью приближения можно считать Марковскими.

Любой марковский процесс описывают с помощью вероятностей состояний и переходных вероятностей.

Вероятности состояний Pk(t) марковского процесса – это вероятности того, что случайный процесс (система) в момент времени t находится в состоянии Sk:

 

Переходные вероятности марковского процесса – это вероятности перехода процесса (системы) из одного состояния в другое:

 

 

Марковский процесс называется однородным, если вероятности перехода за единицу времени не зависят от того, где на оси времени происходит переход.

Наиболее простым процессом является цепь Маркова – марковский случайный процесс с дискретным временем и дискретным конечным множеством состояний.

При анализе цепи Маркова составляют граф состояний, на котором отмечают все состояния цепи (системы) и ненулевые вероятности за один шаг.

Марковскую цепь можно представить себе так, как будто точка, изображающая систему, случайным образом перемещается по графу состояний, перетаскивая за один шаг из состояния в состояние или задерживаясь на несколько шагов в одном и том же состоянии.

Переходные вероятности цепи Маркова за один шаг записывают в виде матрицы P=||Pij||, которую называют матрицей вероятностей перехода или просто переходной матрицей.

Пример: множество состояний студентов специальности следующие:

S1 – первокурсник;

S2 – второкурсник …;

S5 – студент 5 курса;

S6 –специалист, окончивший вуз;

S7 – человек, обучавшийся в вузе, но не окончивший его.

Из состояния S1 за год возможны переходы в состояние S2 с вероятностью r1; S1 с вероятностью q1 и S7 с вероятностью p1, причем:

r1+q1+p1=1.

Построим граф состояний данной цепи Маркова и разметим его переходными вероятностями (отличными от нуля).

 

 

Составим матрицу вероятностей переходов:

 

Переходные матрицы обладают свойством:

- все их элементы неотрицательны;

- их суммы по строкам равны единице.

Матрицы с таким свойством называют стохастическими.

Матрицы переходов позволяют вычислить вероятность любой траектории цепи Маркова с помощью теоремы умножения вероятностей.

Для однородных цепей Маркова матрицы переходов не зависят от времени.


При изучении цепей Маркова наибольший интерес представляют:

- вероятности перехода за m шагов;

- распределение по состояниям на шаге m→∞;

- среднее время пребывания в определенном состоянии;

- среднее время возвращения в это состояние.

Рассмотрим однородную цепь Маркова с n состояниями. Для получения вероятности перехода из состояния Si в состояние Sj за m шагов в соответствии с формулой полной вероятности следует просуммировать произведения вероятности перехода из состояния Siв промежуточное состояние Sk за l шагов на вероятность перехода из Sk в Sj за оставшиеся m-l шагов, т.е.

 

 

Это соотношение для всех i=1, …, n; j=1, …,n можно представить как произведение матриц:

P(m)=P(l)*P(m-l).

Таким образом, имеем:

P(2)=P(1)*P(1)=P2

P(3)=P(2)*P(1)=P(1)*P(2)=P3 и т.д.

P(m)=P(m-1)*P(1)=P(1)*P(M-1)=Pm,

что дает возможность найти вероятности перехода между состояниями за любое число шагов, зная матрицу переходов за один шаг, а именно Pij(m) – элемент матрицы P(m) есть вероятность перейти из состояния Si в состояние Sj за m шагов.

 


Уравнения Колмогорова

На практике значительно чаще встречаются ситуации, когда переходы системы из состояния в состояние происходит в случайные моменты времени, которые заранее указать невозможно: например, выход из строя любого элемента аппаратуры, окончание ремонта (восстановление) этого элемента. Для описания таких процессов в ряде случаев может быть с успехом применена схема марковского случайного процесса с дискретными состояниями и непрерывным временем – непрерывная цепь Маркова. Покажем, как выражаются вероятности состояний для такого процесса. Пусть S={S1,S2,…Sn}. Обозначим через pi(t) - вероятность того, что в момент t система S будет находиться в состоянии ). Очевидно . Поставим задачу – определить для любого t pi(t). Вместо переходных вероятностей Pij введем в рассмотрение плотности вероятностей перехода

.

Если не зависит от t, говорят об однородной цепи, иначе - о неоднородной. Пусть нам известны для всех пар состояний (задан размеченный граф состояний). Оказывается, зная размеченный граф состояний можно определить p1(t),p2(t)..pn(t) как функции времени. Эти вероятности удовлетворяют определенного видадифференциальным уравнениям, (уравнения Колмогорова).

 

 

Интегрирование этих уравнений при известном начальном состоянии системы даст искомые вероятности состояний как функции времени. Заметим, чтоp1+p2+p3+p4=1 и можно обойтись тремя уравнениями.

Переход из одного состояния в другое может быть отображен графом состояний, в кото­ром вершины представляют собой возможные состояния системы, а ду­ги графа отражают переходы из одного состояния в другое. Если две вершины i и j соединяются дугой (i,j), то это означает, что воз­можен непосредственный переход из состояния i в состояние j. Мар­ковская цепь может, таким образом, быть представлена как случай­ное блуждание на графе состояний системы.

Поскольку переход из одного состояния в другое для СМО воз­можен в любой момент времени, определяемый появлением заявки во входном потоке, то для изуче­ния СМО применяются непрерывные марковские цепи.

Одна из важнейших задач те­ории марковских процессов вообще и ТМО в частности заключается в нахождении вероятностей состоя­ний цепи. Эти вероятности для непрерывных марковских цепей оп­ределяются с помощью дифференци­альных уравнений Колмогорова.


 

 

Рис.1

Рассмотрим некоторую произвольную систему, граф состояний которой приведен на рис.1. Система имеет n состояний S1,S2,...,Sn. Процесс перехода из одного состояния в другое описывает­ся непрерывной цепью Маркова. Пусть Pi(t) - вероятность того, что в момент времени t система будет находиться в состоянии Si (i=1,2,…,n). Поскольку система не может находиться одновременно в двух состояниях, то события, заключающиеся в нахождении системы в состояниях S1,S2,…,Sn, несовместны и образуют полную сис­тему событий. Отсюда следует

(51)

Это соотношение называется условием нормировки. Задача заключает­ся в определении вероятности любого состояния Pi(t) в любой мо­мент времени t.

Введем понятие вероятности перехода системы из состояния i, где она находилась в момент времени t, в состояние j за время Dt Pij(t,Dt). Очевидно, что Pij(t,Dt) представляет собой условную вероятность того, что в момент времени t + Dt система окажется в состоянии Sj при условии, что в момент времени t она находилась в состоянии Si: pij(t,Dt)= p(Sj(t+Dt)/Si(t)).

Предел отношения вероятности перехода pij(t,Dt) к длине интервала времени Dt назовем плотностью вероятности перехода

. (52)

Плотность вероятности перехода определим только для случаев i¹j.

Если lij(t)=const, то марковская цепь называется однородной. В противном случае, когда lij(t) являются функциями времени, цепь называется неоднородной. При расчетах вероятностей состояний марковской цепи предполагается, что все эти плотности вероятнос­тей переходов lij известны. Если у каждой дуги графа состояний системы проставить плотность вероятности перехода по данной дуге, то полученный граф назовем размеченным графом состояний (см.рис.1). Уравнения Колмогорова составляются в соответствии с разме­ченным графом состояний. Рассмотрим фрагмент размеченного графа состояний (рис.1), обведенный штрихпунктирной линией. Отбро­сим вначале дуги, изображенные пунктиром, и определим вероятность нахождения системы в состоянии Si в момент времени t+Dt. С уче­том того, что вершина Siсвязана только с вершинами Sk и Sj, ука­занное событие будет иметь место в двух случаях:

- система находилась в состоянии Si в момент времени t и за время Dt из этого состояния не вышла;

- система находилась в состояния sk в момент времени t и за время Dt перешла из Skв Si.

Если отрезок Dt достаточно мал, то вероятность перехода pij(t,Dt) может быть определена приближенно с помощью (52)

pij(t,Dt) » lij(t)Dt (53)

С учетом (53) и свойства марковости процесса вероятность первого случая (отсутствие перехода по дуге (Si,Sj))

pI = (1-lij(t)Dt)pi(t).

Вероятность второго случая с учетом (53)

pII » lki(t)pk(t).

Тогда можно определить искомую вероятность как

pi(t+Dt)= pI + pII = (1-lij(t)Dt)pi(t) + lki(t)pk(t)Dtpk(t)

или

(54)

Переходя в (53) к пределу при Dt ® 0, получим

. (55)

 

Теперь добавим к вершине Si дуги, обозначенные на рис.1 пункти­ром. Тогда при вычислении pi(t+Dt) необходимо учитывать возможный переход из Si в Sj и Sr и переходы из Sk и Sl в Si. В этом случае

PI = [1-(lij(t)+lir)Dt]p1(t),

PII = lk1(t)Dtpk(t)+ll1(t)Dtp1(t).

Повторяя вышеописанные рассуждения, получим

. (56)

На основании (55) и (56) можно сформулировать правила сос­тавления уравнений Колмогорова по размеченному графу состояний непрерывной марковской цепи:

1. Система дифференциальных уравнений Колмогорова имеет форму Коши. Каждое уравнение составляется с помощью рассмотрения ве­роятности состояния, представленного соответствующей вершиной в размеченном графе. Число уравнений системы равно числу вершин графа.

2. Число слагаемых правой части каждого уравнения равно чис­лу дуг, инцидентных соответствующей вершине.

3. Дугам с положительной инциденцией соответствуют отрица­тельные слагаемые, а дугам с отрицательной инциденцией - положи­тельные.

4. Каждое слагаемое правой части равно произведению вероят­ности состояния, соответствующего началу рассматриваемой дуги, на плотность вероятности перехода по данной дуге.

Начальные условия для системы уравнений Колмогорова опреде­ляются начальным состоянием системы. Например, если начальное состояние было S2 , то начальные условия имеют вид: p1(0)=0; р2(0)=1; р3(0)=0;…;рn(0)=0. Уравнения (55) и (56) были вы­ведены для общего случая неоднородной марковской цепи. Для одно­родной марковской цепи все lij(i,j=l,…,n) постоянны.

Рассмотрим одно важное свойство уравнений Колмогорова (55), которое может быть представлено в виде

, (57)

 

где - n-мерный вектор вероятностей состояний системы; р = {p1(t),…,pn(t)}; L - n´n-матрица плотностей перехода.

В соответствии с вышеописанными правилами составления урав­нений Колмогорова одна и та же плотность вероятности перехода lij будет входить в одно из уравнений со знаком "+", а в другое - со знаком "-", поскольку для двух смежных вершин дуга, соединяющая их, будет обладать положительной инциденцией по отношению к одной вершине и отрицательной по отношению к другой. Это приведет к то­му, что сумма всех элементов в каждом столбце матрицы будет равна нулю. Тогда любая строка матрицы L будет равна сумме остальных строк. Следовательно, матрица L является всегда вырожденной. Бо­лее строго это свойство доказывается в [7].

Рассмотрим систему с размеченным графом состояний, изобра­женным на рис.2. Система уравнений Колмогорова и матрица L для этого случая в соответствии с правилами 1-4 будут иметь вид:

dp1/dt=-(l12+l13)p1+l41p4,

dp2/dt=l12p1-l25p2+l32p3,

dp3/dt=l13p3-(l32+l34)p3+l53p5, (58)

dp4/dt=l34p1-(l41+l45)p4,

dp5/dt=l25p2+l45p4-l53p5.

Исключение любого уравнения из этой системы нарушает указанное соотношение для строк матрицы L, следовательно, ранг матрицы L будет равен n-1. Для того чтобы система уравнений Колмогорова имела единственное решение при заданных начальных условиях, не­обходимо исключить любое из уравнений системы (58) и заме­нить его условием нормировки (51).

Итак, решение системы (57) без одного уравнения (безразлич­но какого) с условием (51) определяет в любой момент времени поведение вероятностей состояний марковской цепи при заданных начальных условиях.

 

Рис.2

 

Получить это решение можно с помощью любых численных методов (например, Рунге-Кутта, Эйлера-Коши и т.д.), реализуемых на ЭВМ. Только в самых простых случаях система уравнений Колмогорова мо­жет быть проинтегрирована в квадратурах. В большинстве практичес­ких случаев для расчета вероятностей состояний используются не решения систем уравнений Колмогорова в любой момент времени, а асимптотические оценки этих решений при t®¥.

 

 

Лекция 15. Предельные вероятности состояний. Простейший поток событий.

 

Асимптотические оценки в соответствии с известной теоремой А.А.Маркова могут быть получены для марковских цепей, обладающих эргодическим свойством.

Определение 1. Если число состояний системы конечно и из каждого состояния можно перейти в любое другое за произвольное число шагов, то говорят, что такая система обладает эргодическим свойством.

Определение 2. Пусть марковский процесс характеризуется ве­роятностями перехода из состояния i в состояние j за время t

pij(t) (0£i£n; 0£j£n).

Процесс называется транзитивным, если существует такое t>0, что pij(t)>0 (0£i£n; 0£j£n). Из определений 1 и 2 следует, что процессы в марковских цепях с эргодическим свойством являются транзитивными.

Теорема Маркова. Для любого транзитивного марковского процесса предел существует и не зависит от начального состояния i.

 

Это означает, что при t®¥ в системе устанавливается неко­торый предельный стационарный режим, характеризующийся постоян­ной, не зависящей от времени, вероятностью каждого из состояний системы. При этом данная вероятность представляет собой среднее относительное время пребывания системы в данном состоянии. Это значит, что если время работы всей системы 100 ч, а вероятность состояния S1 равна p1=0,15, то система будет находиться в состоянии S1 в среднем 15 ч.

Пределы, к которым стремятся вероятности каждого из состоя­ний марковской цепи с эргодическим свойством при t®¥, называ­ются предельными вероятностями. При рассмотрении СМО мы будем иметь дело только с эргодическими марковскими цепями. Пусть V - некоторое подмножество множества состояний системы S , а V’ - его дополнение до S . Если множество V обладает эргодическим свойс­твом и ни из одного состояния множества V нельзя перейти ни в од­но из состояний множества V’, то множество называется замкнутым или эргодическим множеством. Эргодические системы состоят из од­ного единственного эргодического множества (S=V, V’=Æ) и называются поэтому неразложимыми. Если в системе S множество V'¹Æ или в этой системе можно выделить несколько эргодических множеств S = V1ÈV2È…ÈVn, то такая система называется разложимой. Примеры таких систем приведены на рис.3.

На рис.3,а представлена сис­тема с двумя эргодическими множест­вами V1=(S2,S3,S4) и V2(S5,S6). На рис.3, б эргодическое множество состоит лишь из одного состояния (S4). Если эргодическое множест­во состоит лишь из одного состоя­ния, то это состояние называется поглощающим, так как попав в не­го однажды, процесс остается нав­сегда в поглощающем состоянии. Ха­рактерная особенность графа состо­яний неразложимой эргодической мар­ковской системы заключается в том, что каждой вершине этого графа ин­цидентны дуги как с положительной, так и с отрицательной инцидент­ностью (т.е. у каждой вершины име­ются дуги, направленные как к вер­шине, так и от нее, см., например, рис. 1 и 2).

 

а б

Рис. 3

 

Вычисление предельных вероят­ностей состояний для таких систем упрощается в связи с тем, что, поскольку все эти вероятности яв­ляются постоянными величинами, то их производные по времени рав­ны 0 (dpi/dt=0 для всех i). Поэтому левые части системы уравнений Колмогорова (58) приравниваются нулю и она превращается в систе­му линейных алгебраических уравнений

. (59)

Нетривиальное решение системы (59) может быть получено только в случае вырожденности матрицы L. Выше было доказано, что матрица плотностей вероятностей L является вырожденной. Система (59) без одного из своих уравнений дополняется условием нормировки

(60)

 

Соотношения (59) и (60) позволяют определить предельные вероят­ности состояний. Поскольку часть слагаемых, соответствующая дугам с отрицательной инцидентностью, положительна, а другая часть, со­ответствующая дугам с положительной инцидентностью, отрицательна, то каждое уравнение системы (59) может быть составлено с учетом мнемонического правила: для каждого состояния сумма членов, соот­ветствующих входящим дугам, равна сумме членов, соответствующих выходящим дугам.

Пример. Для системы, изображенной на рис.2, из уравнений Колмогорова (58) следует

(l12+l13)p1=l41p4 (l41+l45)p4=l34p3

l25p1=l12p1+l32p3 l53p3=l52p2+l45p4

(l32+l34)p4=l13p1+l53p5 (61)

Для решения (61) нужно исключить любое из первых пяти уравнений (например, пятое, как содержащее наибольшее число членов).

Предельные вероятности состояний используются в ТМО значи­тельно чаще, чем решения уравнений Колмогорова, причем, зная ре­шение системы уравнений Колмогорова, можно определить момент окончания переходного процесса изменения вероятностей состояний во времени. Это дает возможность рассчитать, промежуток времени начиная от включения системы в работу, по истечении которого ве­роятности состояний достигнут своих предельных значений и будут справедливы оценки, использующие эти значения. В заключение этого параграфа рассмотрим один частный, но практически очень важный класс марковских процессов, широко применяемых при исследовании СМО. Это - процессы "размножения и гибели". К ним относятся мар­ковские цепи, представимые размеченным графом, который состоит из вытянутой цепочки состояний, изображенной на рис.4.

 

 

Рис.4

 

Матрица плотностей вероятностей переходов такой системы яв­ляется якобиевой (тридиагональной):

 

Рассматривая начальное состояние S0 , получим в соответствии с (59)

l01p0=l10p1 (62)

Для состояния S1 имеем

l01p0+l21p2=l10p1+l12p1 (63)

Вычитая из (63) равенство (62), получим

l21p2=l12p1(64)

Продолжая этот процесс до n-гo состояния включительно, получим

ln,n-1pn=ln-1,npn-1

Из (62) теперь можно выразить p1 через р0:

p1=p0(l01/l10) (65)

Подставляя (64) в (65), получим

p2=p0(l01l12/l10l21)

Очевидно, что для произвольного k (1£k£n) будет справедливо вы­ражение

. (66)

 

В соответствии с (66) и размеченным графом состояний, представленным на рис.4, можно сформулировать правило, с по­мощью которого можно выразить предельные вероятности состояний процесса "размножения и гибели" через вероятность начального сос­тояния р0. Это правило гласит: вероятность произвольного состоя­ния pk (l£k£n) равна вероятности начального состояния р0, умно­женной на дробь, числитель которой равен произведению плотностей вероятностей перехода для дуг, переводящих состояние системы сле­ва направо, а знаменатель - произведение плотностей вероятностей перехода справа налево от начального до k-гo состояний включи­тельно.

Вероятность р0 находится из условия нормировки и выражений (66) следующим образом:

(67)

 

Выражения (66) и (67) полностью определяют предельные вероят­ности процесса "размножения и гибели".

Цепи Маркова с непрерывным временем являются математическими моделями СМО. Для анализа СМО необходимо также иметь математичес­кие модели входных потоков заявок на обслуживание. Эти математи­ческие модели представляют собой потоки события, являющиеся от­дельным классом случайных процессов. Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. Этот поток количественно может быть охарактеризован числом событий x(t), имевших место в течение определенного промежутка времени (0,t). Тогда случайный поток со­бытий можно определить как случайный процесс x(t) (t³0), в кото­ром функция x(t) является неубывающей функцией времени, способной принимать лишь целые неотрицательные значения. Иными словами, график функции x(t) является ступенчатой кривой с постоянной вы­сотой ступеньки, равной единице, причем ширина ступеньки - слу­чайная величина. Примерами таких потоков могут служить: поток вызовов на АТС, поток запросов в вычислительный центр коллективного пользования и т.п. Моменты появления событий можно отобразить точками на временной оси, поэтому поток событий часто представляется и как последовательность таких точек. Поток событий называется регулярным, если события следуют одно за другим через одинаковые, строго фиксированные промежутки времени.

В ТМО такие потоки практи­чески, не используются, однако они представляют интерес как предельный случай. Значительно чаще имеют дело с потоками, в которых времена поступления со­бытий и, следовательно, проме­жутки времени между ними являются случайными (иррегулярными). При этом наиболее простые рас­четные соотношения получаются при использовании простейших потоков событий, которые широко применяются при исследовании CMО.

Простейшими называются потоки, обладающие следующими тремя свойствами: стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства подробнее.

1. Поток событий называется стационарным, если вероятность pk(l) того, что за отрезок времени t произойдет k событий, зави­сит только от его длины t и не зависит от его расположения на временной оси, т.е. pk(t’,t’+t)=pk(t). Из определения однородной марковской цепи следует, что стационар­ность - это однородность потока по времени.

2. Поток называется ординарным, если вероятность попадания на любой элементарный участок временной оси двух или более собы­тий является бесконечно малой величиной, т.е.

 

3. Поток событий называется потоком без последействия, если вероятность попадания событий на некоторый участок временной оси не зависит от того, сколько событий попало на другие участки. Иными словами, условная вероятность наступления k событий за про­межуток времени (t’,t’+t), вычисленная при любом условии чередо­вания событий до момента t', равна безусловной вероятности pk(t) того же события, т.е.

p[(t’,t’+t),k/(t",t"+t),m]=pk(t),tÇtk=Æ, t"<t’.

На практике редко встречаются потоки, удовлетворяющие всем трем допущениям одновременно. Например, поток вызовов в АТС в дневные часы более интенсивен, чем в ночные. Тем не менее, рассматривая работу АТС в периоды с 12 до 13 ч дня и с 2 до 3 ч ночи, поток вызовов на этих более коротких промежутках можно с высокой степенью точности считать стационарным. Этот пример говорит о том, что в большом числе случаев можно ввести определенные упрощения, вытекающие из принципов работы конкретных реальных систем и позволяющие проводить исследование реальных СМО путем замены их входных потоков простейшими. Это дает возможность существенно упростить математический аппарат исследования СМО.

Указанные свойства простейших потоков позволяют просто опре­делить их распределение вероятностей pk(t), т.е. вероятность того, что за отрезок времени длиной t произойдет k событий. Прежде всего следует оговорить, что мы будем рассматривать только те по­токи, в которых за конечный промежуток времени t с вероятностью 1 будет происходить лишь конечное число событий, т.е.

(68)

Тогда простейший поток можно представить цепью Маркова, изобра­женной на рис.5,а, где состояние S0 означает отсутствие собы­тий в интервале t, S1 - появление одного события за время t, S2 - появление двух событий за время t,…, Sk - появление k событий за время t. Применив правила составления уравнений Колмогорова для такого размеченного графа состояний, получим:

dp0(t)/dt = - lp0(t),

dp1(t)/dt = - lp1(t)+lp0(t) (69)

dpk(t)/dt = - lpk(t)+lpk-1

с начальными условиями: р0(0)=1, р1(0)=0,…, рk=0,…

Плотность вероятности перехода l, которая участвует в уравнениях (69), является в данном случае интенсивностью потока собы­тий. Под интенсивностью потока понимается среднее по ансамблю реализаций число событий в единицу времени. Вероятность перехода рi,i+1(t,t+Dt) равна веро­ятности появления одного события в интервале от t до t+Dt, поскольку ординар­ность потока исключает появление большего числа событий в этом интервале. Очевидно, что эта вероятность равна среднему числу по­явлений одного события за время Dt. Тогда с учетом определения (52) можно сделать вывод, что плотность вероятности перехода для марковской цепи (56) равна интенсивности простейшего потока. В стационарном простейшем потоке l = const, тогда как в не­стационарном потоке интенсивность зависит от времени: l = l(t).

 

а б

Рис.5

 

Решить систему (69) можно различными методами. Одним из наиболее простых является метод производящих функций. Производя­щей функцией распределения вероятностей состояний pk(t) называет­ся ряд

, (70)

где |z|£l.

С учетом (68) ряд (70) сходится абсолютно. Умножая на zk все уравнения (69) и суммируя по k от 0 до ¥, получим:

откуда следует

dln Ф/dt = l(z-1) (71)

Интегрируя (71), получим

ln Ф(t,z) – ln Ф(0,z) = l(z-1)t

С учетом начальных условий системы (69) можно написать

Ф(0,z) = p0(0) = 1, ln Ф(0,z) = 0.

Следовательно,

Подставив вместо Ф(t,z) выражение (70), получим окончательно

(72)

 

Распределение (72) является известным распределением Пуассона, поэтому простейшие потоки называются пуассоновскими.

Важнейшей характеристикой любого потока является закон рас­пределения интервала времени Т между двумя соседними событиями в потоке (см.рис.5,б). Определим этот закон для пуассоновских потоков. Вначале рассмотрим интегральный закон распределения F(t)=p(t>T), т.е. вероятность того, что случайная величина Т при­мет значение, меньшее чем t. Для этого необходимо определить ве­роятность того, что в интервал времени t, отсчитываемый от момента t0 появления некоторого события, попадет еще хотя бы одно событие (см.рис.5,б). Эту вероятность можно определить, зная вероятность отсутствия событий в интервале t, равную вероятности p0(t) состояния S0 на графе рис.5, а. В соответствии с (72)

p0(t)=e-lt

откуда следует

F(t)=p(t>T)=1-e-lt , t>0 . (73)

Дифференцируя (73) по времени, получим искомый закон распреде­ления

(74)

Закон распределения (74) называется показательным (экспоненци­альным). Определим первые два момента показательного распределе­ния:

- математическое ожидание

(75)

- дисперсия

(76)

Интегрируя (75) и (76) по частям, получим

 

. (77)

 

Из (77) следует, что для показательного распределения математи­ческое ожидание и среднеквадратичное отклонение равны друг другу. Кроме того из (77) следует, что в простейшем потоке среднее время между двумя соседними событиями равно обратной величине ин­тенсивности потока.

Определим теперь вероятность попадания одного события в простейшем потоке на элементарный участок временной оси (см.рис.5,б). Так же, как и в предыдущем случае, эта вероятность

P1(Dt) = 1 – P0(t) = 1 - e-lDt .

Разлагая e-lDt в ряд по степеням lDt и ограничиваясь только первой степенью (в силу малости Dt), получим

P1(Dt) = lDt . (78)

Выражение в правой части (78) называется элементом вероятности появления события в простейшем потоке.

Марковские цепи являются математи­ческими моделями некоторых реальных систем, а потоки событий яв­ляются моделями внешних воздействий на эти системы. В дальнейшем будем считать, что переход системы из одного состояния i в другое j в соответствии с размеченным графом состояний происходит под действием потока событий с интенсивностью lij, равной соответс­твующей плотности вероятности перехода. Эта интенсивность определяется как среднее число переходов из состояния i в состояние j за единицу времени.

Если все потоки событий являются пуассоновскими, то процесс в системе будет марковским.

Уравнения Колмогорова составляют основу аналитических моделей СМО. Их можно получить следующим образом.

Изменение вероятности нахождения системы в состоянии за время есть вероятность перехода системы в состояние из любых других состояний за вычетом вероятности перехода из состояния в другие состояния за время , т.е.

(1)

где ( ) и ( ) — вероятности нахождения системы в состояниях и соответственно в момент времени ; произведение вида есть безусловная вероятность перехода из в , равная условной вероятности перехода, умноженной на вероятность условия; и — множества индексов инцидентных вершин по отношению к вершине по входящим и исходящим дугам на графе состояний соответственно.

Разделив выражение (1) на и перейдя к пределу при , получим

откуда следуют уравнения Колмогорова

В стационарном состоянии и уравнения Колмогорова составляют систему алгебраических уравнений, в которой -й узел представлен уравнением

(2)

Прибавляя к левой и правой частям уравнения (2) и учитывая что получаем т.е.

где — финальные вероятности.

 

Условия существования стационарного режима:

- цепь Маркова должна быть однородной;

- множество состояний системы должно быть эргодическим, т.е. из любого состояния Si можно за конечное число шагов перейти в состояниеSj .

Предельные вероятности состояний представляют собой среднее время пребывания системы в данном состоянии. Например, если у системы S три возможных состояния: S1, S2, S3 , причем их предельные вероятности равны 0.2, 0.3, 0.5, то это означает, что после перехода к установившемуся режиму система S в среднем две десятых времени будет находиться в состоянии S1, три десятых – в состоянии S2, половину времени – в S3.

Для вычисления предельных вероятностей необходимо в системе уравнений Колмогорова положить все левые части (производные) равными нулю. Действительно, в предельном (стационарном) режиме все вероятности состояний постоянны, а значит, их производные равны нулю. Следовательно, система дифференциальных уравнений превращается в систему линейных алгебраических уравнений.


Классификация СМО

Первое деление (по наличию очередей):

  • СМО с отказами;
  • СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь, – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);
  • СМО с обслуживанием с приоритетом, т. е. некоторые заявки обслуживаются вне очереди и т. д.

Типы ограничения очереди могут быть комбинированными.

Другая классификация делит СМО по источнику заявок. Порождать заявки (требования) может сама система или некая внешняя среда, существующая независимо от системы.

Естественно, поток заявок, порожденный самой системой, будет зависеть от системы и ее состояния.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Пример замкнутой системы: выдача кассиром зарплаты на предприятии.

По количеству каналов СМО делятся на:

  • одноканальные;
  • многоканальные.

 

A / B / m / K / M

Обозначение букв: A и B описывают соответственно распределение промежутков времени между последовательными требованиями и распределение времени их обслуживания

m – число обслуживающих приборов.

A и B принимают значение из следующего набора символов, интерпретация которых даёт распределение:

M – показательное;

Er – распределение Эрланга порядка r;

Hr – гиперпоказательное распределение порядка R;

D – детерминированное;

G – распределение общего вида (неконтролируемое);

Иногда также приходиться указывать ёмкость накопителей системы, т.е. предельное число заявок в системе или длину очереди – k.

A / B / m / k / M

M – число источников нагрузки.

В случае отсутствия одного или двух последних индексов (A/B/m/k/ M или A/B/m/k) предполагается, что его значение сколь угодно велико, т.е. неограниченно.

D / M / 2 / 20 – обозначает СМО с двумя обслуживающими приборами с постоянным временем между двумя последовательно поступающими требованиями, показательным распределением временем обслуживания и накопителем ёмкостью 20 требований.

M / G / 1 - одноканальная система массового обслуживания с простейшим входящим потоком, произвольным распределением времени обслуживания, неограниченной очередью.

Показательное распределение обладает Марковским свойством: для любого момента времени вероятность наступления события определяется только его состоянием в этот момент времени и не зависит от предыстории процесса.

Развитие теории массового обслуживания привело к созданию модифицированных обозначений для новых классов исследованных систем: замкнутых, с неординарным потоком заявок, с неординарным потоком заявок, с групповым обслуживанием, с различными вариантами приоритета и т.д.

 

Определение случайного процесса.

Пусть задано множество Ω — множество элементарных исходов и некоторое множество T, являющееся подмножеством множества вещественных чисел, то есть T ⊂ R.  Будем называть случайной функцией вещественную числовую функцию двух аргументов ω ∈ Ω и t ∈ T. Обозначим случайную функцию ξ(w, t). Если аргумент t принимает смысл времени t ≥ 0, то случайную функцию будем называть случайным процессом.


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 298; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.197 с.)
Главная | Случайная страница | Обратная связь