Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Functions of Random Variables
It is obvious that the PDF fg' of g' has same form as the PDF fg of g if p is a linear function: g' = p0 + p1g:
.. fg((g' − p0)/p1), (3.7)
P fg(gp)
, (3.8)
where gp p=1 are the P real roots of g’ = p(g). A monotonic function p has a unique inverse function p− 1(g'). There- fore Eq. (3.8) reduces to fg'(g') = fg(p− 1(g'))
. (3.9) In image processing, the following problem is encountered with re- spect to probability distributions. We have a signal g with a certain PDF and want to transform g by a suitable transform into g' in such a way that g' has a specifi c probability distribution. This is the inverse prob- lem to what we have discussed so far and it has a surprisingly simple solution. The transform
(g)) (3.10) 82 3 Random Variables and Fields
Now we consider the mean and variance of functions of random vari- ables. By defi nition according to Eq. (3.3), the mean of g' is ∞ Eg' = µg' = ∫ g'fg'(g')dg'. (3.11) − ∞ We can, however, also express the mean directly in terms of the function p(g) and the PDF fg(g):
Eg' = E.p(g)Σ = ∫ p(g)fg(g)dg. (3.12)
p(g) = p(µg) + p'(µg)(g − µg) + p''(µg)(g − µg)2/2 +... (3.13) then
The fi rst-order estimate of the variance of g' is given by
2
. This expression is only exact for linear functions p. The following simple relations for means and variances follow di- rectly from the discussion above (a is a constant): E(ag) = aEg, var(ag) = a2 var g, var g = E(g2) − (Eg)2. (3.16)
|
Последнее изменение этой страницы: 2019-05-04; Просмотров: 236; Нарушение авторского права страницы