Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Functions of Random Variables



=
Any image processing operation changes the signal g at the individual pixels. In the simplest case, g at each pixel is transformed into g' by a function p: g' p(g). Such a function is known in image processing as a point operator. Because g is a RV, g' will also be a RV and we need to know its PDF in order to know the statistical properties of the image after processing it.

It is obvious that the PDF fg' of g' has same form as the PDF fg of g

if p is a linear function: g' = p0 + p1g:


p1
fg'(g') = f g(g) =

..


fg((g' − p0)/p1),                                  (3.7)

p1
..


 

=              =  −
where the inverse linear relation g p− 1(g'): g (g' p0)/p1 is used to express g as a function of g'.

, = ±
From Eq. (3.7) it is intuitive that in the general case of a nonlinear function p(g), the slope p1 will be replaced by the derivative p'(gp) of p(gp). Further complications arise if the inverse function has more than one branch. A simple and important example is the function g' = g2 with the two inverse functions g1, 2 g'. In such a case, the PDF of g' needs to be added from all branches of the inverse function.

=
Theorem 9 (PDF of the function of a random variable) If fg is the PDF of the random variable g and p a diff erentiable function g' p(g), then the PDF of the random variable g' is given by

P fg(gp)


.
p
fg'(g') =..p'(g


,                                    (3.8)

.
).


 

where gp


p=1

are the P real roots of g’ = p(g).


A monotonic function p has a unique inverse function p− 1(g'). There- fore Eq. (3.8) reduces to


fg'(g') =


fg(p− 1(g'))

. ' −        .
p (p 1(g'))


 

.                                 (3.9)


In image processing, the following problem is encountered with re- spect to probability distributions. We have a signal g with a certain PDF and want to transform g by a suitable transform into g' in such a way that g' has a specifi c probability distribution. This is the inverse prob- lem to what we have discussed so far and it has a surprisingly simple solution. The transform


'
g
g' = Fg− 1(F


(g))                                           (3.10)


82                                                                         3 Random Variables and Fields

 

=
converts the fg(g)-distributed random variable g into the fg'(g')-dis- tributed random variable g'. The solution is especially simple for a transformation to a uniform distribution because then F− 1 is a constant function and g' Fg(g)).

Now we consider the mean and variance of functions of random vari- ables. By defi nition according to Eq. (3.3), the mean of g' is


Eg' = µg' =


∫ g'fg'(g')dg'.                                  (3.11)

− ∞


We can, however, also express the mean directly in terms of the function

p(g) and the PDF fg(g):

 


Eg' = E.p(g)Σ  =


∫ p(g)fg(g)dg.                              (3.12)

− ∞


=
Intuitively, you may assume that the mean of g' can be computed from the mean of g: Eg' p(Eg). This is, however, only possible if p is a linear function. If p(g) is approximated by a polynomial

p(g) = p(µg) + p'(µg)(g − µg) + p''(µg)(g − µg)2/2 +... (3.13) then

g
µg' ≈ p(µg) + p''(µg)σ 2/2.                                           (3.14)

From this equation we see that µg' p(µg) is only a good approximation if the both curvature of p(g) and the variance of g are small.

The fi rst-order estimate of the variance of g' is given by


σ
'
2
g' ≈ .p (µg


 

2

)
g
σ 2.                                      (3.15)

.


This expression is only exact for linear functions p.

The following simple relations for means and variances follow di- rectly from the discussion above (a is a constant):

E(ag) = aEg,       var(ag) = a2 var g,        var g = E(g2) − (Eg)2.          (3.16)

 


Поделиться:



Последнее изменение этой страницы: 2019-05-04; Просмотров: 236; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь