Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Стенка балки в условиях сдвига - изотропные и анизотропные материалы



 

Как мы уже видели в предыдущей главе, хотя в верхней и нижней полкахбалки (или верхних и нижних стержнях фермы) возникают большие растягивающиеили сжимающие напряжения (или усилия в стяжках), которые уравновешиваютнаправленную вниз нагрузку и позволяют балке выполнять возложенную на неемиссию, - это напряжения сдвига, возникающие в стенке балки, соединяющейверхнюю и нижнюю ее полки. Стенка балки обычно представляет собой сплошнуюметаллическую пластину, в ферме те же самые функции выполняет какая-либорешетчатая структура.

Так как между материалом и конструкцией нельзя провести четкой грани,то и здесь не очень важно, чем воспринимается перерезывающая сила в балке,сплошной ли стенкой или же решеткой, которая может быть из стержней, проволоки,деревянных брусьев или чего-либо другого. Правда, одно важное отличие здесьесть. Если стенка сделана, скажем, из металлической пластины, то не имеетникакого значения, под каким углом она была вырезана из большого листа,так как свойства металла по всем направлениям одинаковы. Такие материалы,а к ним относятся металлы, кирпич, бетон, стекло и большинство видов камня,называются изотропными, что по-гречески означает "одинаковые во всех направлениях",Тот факт, что металл изотропен (или почти изотропен) и имеет одинаковыепо всем направлениям свойства, упрощает жизнь инженеров и объясняет ихособое пристрастие к металлам.

Рассмотрим теперь стенку в виде решетки. Очевидно, что ее стержни должнырасполагаться под углом около +45° к оси балки. В противном случае стенкане будет иметь достаточной сдвиговой жесткости (рис. 120 и 121), под нагрузкойрешетка сложится, и ферма скорее всего разрушится. Материалы, поведениекоторых напоминает поведение нашей решетки, называются анизотропными (илииногда аллотропными), что по-гречески означает "различные в различных направлениях".

 

 

Рис. 120. Сдвиг приводит к сжатиюи растяжению под углом +45° к направлению сдвига.

 

 

Рис. 121. Системы, подобныетой, что изображена справа, являются жесткими на сдвиг, а системы, подобныеизображенной слева, плохо ему сопротивляются.

Дерево, ткани и почти все биологические материалы анизотропны, причемкаждый по-своему; это обстоятельство весьма усложняет жизнь, и не толькоинженерам. Ткань для одежды является самым распространенным рукотворнымматериалом, и она в высшей степени анизотропна. Как мы уже не раз говорили,различия между материалом и конструкцией довольно туманны, и ткань, хотяпортные и называют ее материалом, на самом деле представляет собой конструкцию,состоящую из отдельных нитей, перекрещивающихся под прямым углом, и ведетсебя при действии нагрузкой почти так же, как и решетчатая стенка балкиили фермы.

Взяв в руки квадратный кусок обыкновенной ткани - это может быть носовойплаток, - вы увидите, что в зависимости от направления приложеннойрастягивающей силы она деформируется совершенно по-разному. Если вы тянетестрого вдоль нитей основы или утка[95], ткань почти не растягивается; другими словами, ее жесткость нарастяжение в этих направлениях велика. Более того, внимательно присмотревшись,вы заметите, что при этом сужение ткани в поперечном направлении тоже невелико(рис. 122), так что коэффициент Пуассона (о котором мы говорили в гл. 7 в связис артериями) мал.

 

 

Рис. 122. При растяжении ткани параллельнонитям основы или утка материал оказывается жестким и его поперечное сокращениенезначительно.

Но если вы теперь потянете ткань под углом 45° к направлению нити, то естьпо диагонали, или, как говорят портные, "по косой", то она растянется гораздобольше; можно сказать, что в этом случае модуль Юнга весьма невелик. Одновременнопроизойдет большое поперечное сокращение, так что в этом направлении величинакоэффициента Пуассона станет гораздо больше, а он может достигать величинпорядка 1 (рис. 123). В целом же, чем более свободно соткана ткань, тембольше будет различие между ее поведением в диагональном и продольно-поперечномнаправлениях.

 

 

Рис. 123. Если ткань растягивается по диагонали, то материал легко поддаетсярастяжению, коэффициент Пуассона для этого направления велик и соответственнопоперечное сокращение значительно.

Думаю, что немногие слышали слово "анизотропия", но такое поведениетканей на протяжении веков, должно быть, было известно почти каждому. Довольноудивительно, однако, что анизотропные свойства тканей до недавнего временине только не использовались в технике и обыденной жизни, но даже не былиосознаны.

Оставим пока в стороне существо анизотропии и обратимся к ее проявлениям.Первое, что нам совершенно ясно, это то, что мы можем свести к минимумуискажения формы текстильных изделий, если нам удастся направить главныенапряжения по возможности вдоль нитей основы и утка. Обычно это приводит кпродольно-поперечному раскрою материала. Если обстоятельства таковы, что тканьтянется под углом 45°, по косой, возникают гораздо большие искаженияпервоначальной формы, но они симметричны. А вот если мы окажемся настольконепредусмотрительными, что рабочие нагрузки будут приложены не в продольном илипоперечном и не в диагональном, а в некотором промежуточном направлении, тогдавозникнут не только большие, но и совершенно не симметричные искажения. Одеждав этом случае растянется и примет странный и почти наверняка непривлекательныйвид[96].

Изготовление парусов почти во все времена было важной отраслью хозяйства,и тем не менее европейские мастера никогда до конца не понимали сути поведенияпарусины. Столетиями они делали паруса таким образом, что их материал растягивалсяв косом по отношению к нитям основы и утка направлении. Такие паруса быстроделались мешковатыми и плохо работали при встречном ветре. Свою лепту внеслоздесь европейское пристрастие к льняной парусине, которая особенно легкодеформировалась из-за неплотного переплетения нитей.

Изготовление парусов на современном уровне относится к началу XIX в.Приоритет здесь принадлежит американским мастерам, которые использовалитуго сотканную парусину из хлопка и так располагали швы, чтобы направлениенитей более или менее соответствовало направлению возникающих напряжений.Вследствие этого американские корабли могли плавать быстрее и круче к ветру,чем британские. Потребовалась, однако, основательная встряска, прежде чемвсе эти простые факты дошли до сознания английских мастеров. Это произошлоблагодаря шуму вокруг яхты "Америка", которая в 1851 г. пришла из Нью-Йоркав Ковец для участия в гонках с быстроходнейшими английскими яхтами.

Гонки происходили вокруг острова Уайт. В качестве приза победителю предназначалсядовольно безобразный предмет из серебра, подаренный королевой Викторией.(Эта кувшиноподобная штука впоследствии получила известность как "КубокАмерики".) Когда королеве доложили, что первой пересекла финишную черту"Америка", она спросила:

— А второй?

И услышала в ответ:

— Второй еще не видно, ваше величество.

После этого английские мастера пересмотрели свою технологию и подтянулисьнастолько, что через несколько лет американские яхтсмены уже покупали парусау Ратсея из Ковеца. Урок, преподанный американцами, запомнился надолго,и, хотя современные паруса в большинстве своем делаются из терилена, кроятсяони таким образом, чтобы нити утка, насколько это возможно, были параллельнысвободным краям паруса, в направлении которых обычно действуют наибольшиенапряжения (рис. 124).

 

 

Рис. 124. В современных парусах нити утка направлены параллельно свободномукраю паруса.

Задачи, связанные с приданием ткани желаемой трехмерной формы, не сильноразличаются, шьем ли мы паруса или одежду. Однако портные и модельеры оказалисьздесь более сведущими, чем строители судов. Всегда, когда это было практическивозможно, они резали ткань лишь вдоль и поперёк, чтобы наибольшие окружныенапряжения действовали в направлении нитей. Если же требовалось, чтобыодежда тесно прилегала к телу, то это достигалось с помощью системы сосредоточенныхнагрузок, иными словами, с помощью шнуровки. Молодая леди викторианскихвремен порой имела не меньшую оснастку, чем парусный корабль. В годы, последовавшиеза правлением короля Эдуарда, от системы шнуровок стали отказываться (возможно,в связи с недостатком горничных), так что над женщинами нависла угроза"бесформенности".

Но вот в 1922 г. мадемуазель Вионе, открывшая магазин в Париже, изобрела"диагональный крой". Вряд ли мадемуазель Вионе слышала о своем знаменитомсоотечественнике Пуассоне и тем более о коэффициенте его имени, но онаинтуитивно поняла, что добиться нужного облегания можно не только с помощьюшнурков, крючков и кнопок. В материале платья действуют вертикальные растягивающиенапряжения, связанные как с весом самой ткани, так и с движениями его владельца.И если ткань расположить так, чтобы ее нити составляли угол 45° с этимивертикальными нагрузками, то можно использовать большое поперечное сокращениеи добиться эффектного облегания фигуры. Такого рода наряды были, несомненно,дешевле и удобней, чем решения времен Эдуарда, но тем не менее тоже моглиразорить (рис. 125 и 126).

 

 

Рис. 125. Одно из первых платьев с новым кроем по диагонали, созданное мадемуазель Вионе (1926).

 

 

Рис. 126. Платье с прямым кроем, созданное мадемуазель Вионе.

Аналогичные проблемы возникают и при конструировании больших ракет.Существуют ракеты на жидком топливе, например на керосине, для сжиганиякоторого требуется жидкий кислород. Но жидкостные ракетные двигатели имеютсложную систему подачи топлива и окислителя, которая работает не всегданадежно. Поэтому лучше, наверное, использовать двигатели на твердом топливе(на полимерной основе). Оно горит очень хорошо, но относительно медленно,выделяя огромное количество горячих газов, которые со страшным шумом вылетаютиз сопла двигателя, толкая ракету вперед.

Как топливо, так и производимые им газы находятся в прочном цилиндрическомкорпусе или сосуде давления, стенки которого не следует подвергать действиюпламени и высоких температур. По этой причине заряду топлива придаетсяформа толстостенной полой трубы, которая плотно прилегает к корпусу ракеты.Когда ракету запускают, горение начинается с внутренней поверхности трубыи распространяется затем в направлении корпуса. В результате благодаряналичию еще не сгоревшего топлива материал корпуса оказывается защищеннымот воздействия пламени вплоть до последнего момента.

Твердое топливо на полимерной основе и выглядит, и ведет себя подобнопластилину и, как и пластилин, склонно к растрескиванию, особенно при низкихтемпературах. При запуске ракеты ее корпус, естественно, стремится расширитьсявследствие давления газа, так же как расширяются артерии от давления крови;но вместе с корпусом должно расширяться и твердое топливо. Если заряд ещене нагрелся, в нем могут возникнуть трещины, когда окружная деформациякорпуса достигнет примерно 1%, после чего пламя проникнет через трещиныи разрушит корпус. Это приводит иногда к сенсационным взрывам, подобнымтому, когда развалилась одна из ракет Поларис.

Примерно около 1950 г. кому-то пришло в голову, что корпус ракеты лучшеделать не из металла, а в виде цилиндрической трубы, полученной геликоиднойнамоткой двух семейств прочных стекловолокон, связанных между собой смолой.Если правильно рассчитать углы намотки, то можно добиться того, чтобы изменениедиаметра трубы под давлением было мало. Правда, при этом осевая деформациятакого корпуса будет больше, чем металлического (как и талии в платьяхмадемуазель Вионе). Однако по ряду причин продольное удлинение менее опаснодля топлива. Если не ошибаюсь, эта идея берет свое начало от диагональногокроя вечерних туалетов, популярных в то время.

Допустимые деформации корпуса ракеты отнюдь не допустимы для кровеносныхсосудов. Как мы видели в гл. 7, при колебаниях давления крови артерия должнапри значительных изменениях ее диаметра сохранять более или менее постояннуюдлину. Оба эти требования может удовлетворить конструкция трубы ссоответствующей геликоидной намоткой волокон. С такого рода проблемами, как нистранно, постоянно сталкиваются биологи. Примечательно, что Стив Вейнрайт,профессор университета Дюка, изучающий червей, совершенно независимо провел теже самые расчеты, которыми мы занимались лет 20 назад в области ракетнойтехники[97]. Заинтересовавшисьэтим обстоятельством, я выяснил через профессора Биггса, что и в этом случаетолчком послужил крой по косой.

Изобретение косого кроя принесло мадемуазель Вионе. славу в мире модельеров.Она дожила до глубокой старости и умерла недавно в возрасте 98 лет, так,по-видимому, и не узнав о своем весьма значительном вкладе в космическуюи военную технику и биомеханику червей.

 

Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот

 

Если еще немного подумать о стенках балок, решетчатых стенках ферм и о вечернихтуалетах косого кроя, то становится очевидным, что касательное напряжениепредставляет собой просто комбинацию напряжений растяжения и сжатия,действующих под углом +45° (рис. 120). Более того, любое напряжение сжатия ирастяжения[98] приводит к появлению под углом 45°касательного напряжения.

Действительно, твердые тела, особенно металлы, очень часто при растяженииразрушаются вследствие касательных напряжении под углом 45° к направлениюрастяжения. Именно эти напряжения приводят к появлению "шеек" в металлическихстержнях и пластинах при растяжении и к пластичности металлов (рис. 127и гл. 4). Как мы увидим в следующей главе, почти то же самое может происходитьи при сжатии. Многие твердые вещества при сжатии разрушаются путем скольжения,вызванного касательными напряжениями.

 

 

Рис. 127. В пластичных металлах наблюдается тенденция к разрушению путемсдвига.

 

Складкообразование

 

Толстая пластина или просто кусок металла способны хорошо сопротивлятьсясжатию, так что если их нагрузить сдвигом, то возникающие под углом +45°напряжения сжатия и растяжения будут для них неопасны. Тонкие панели, мембраны,пленки и ткани плохо сопротивляются сжатию в их плоскости, поэтому присдвиге на этих элементах образуются складки. Это весьма обычно для тонкихметаллических панелей, широко используемых в конструкциях самолетов, образованиетаких складок часто можно наблюдать на поверхности их крыла и фюзеляжа(рис. 128). Инженеры называют это "вагнеровским полем".

 

 

Рис. 128. Местные выпучивания обшивки фюзеляжа вертолета.

Еще чаще такие складки можно видеть на одежде, просторных чехлах, скатертяхи плохо скроенных парусах. Вряд ли портные так уж часто говорят о вагнеровскомполе, но иногда они упоминают о некоем довольно таинственном качестве,известном в текстильном товароведении как сминаемость. Сминаемость тканизависит главным образом от ее модуля сдвига, и хотя немногие из модельеровмогут указать с системе СИ или других единицах величину модуля сдвига G  для используемых ими шелковых или хлопчатобумажных тканей, но, чем меньшемодуль сдвига материала, тем меньше у него тенденция к образованию нежелательныхскладок, или сминаемость.

Причина того, что мы не можем использовать для одежды бумагу или целлофан, непоказавшись при этом смешными, заключается главным образом в слишком большойжесткости на сдвиг, которой обладают эти материалы, именно поэтому они не могутпринимать нужные формы. А вот трикотажные ткани, наоборот, имеют как малыймодуль Юнга, так и малый модуль сдвига, поэтому при их использовании легкодобиться плотного облегания фигуры. Девушки быстро открыли это качество ввязаных свитерах. Точно так же у молодых людей кожа имеет малый модуль Юнга имодуль сдвига и поэтому легко "подстраивается" под формутела[99]. В старости кожа становится более жесткой на сдвиг,печальные результаты чего бывают, к сожалению, слишком очевидными. Недавнопрофессор М. Кенеди из Стрэтклайдского университета провел широкие исследованияупругих свойств кожи человека. В результате старческие морщины, кажется,впервые получили количественное описание.

 

Кручение

 

Самолет превратился из чего-то, чего "вообще не может быть", в грозноевоенное оружие за каких-нибудь 10 лет. Это случилось почти без помощи науки.Пионеры авиации зачастую были талантливыми любителями и заядлыми спортсменами,но лишь немногие из них имели какую-то теоретическую подготовку. Как исовременных автомобилистов, их скорее интересовали шумные и ненадежныедвигатели, чем несущая конструкция, о которой они мало что знали и ещеменьше заботились. Естественно, выжав из двигателя достаточную мощность,вы можете поднять в воздух почти любой самолет. А вот что с ним будет дальше,зависит от управления, устойчивости в полете и прочности конструкции, существокоторых весьма сложно.

На заре авиации слишком многие храбрецы, такие, как К. С. Ролле и С. Ф. Коди,поплатились жизнью за столь легкомысленный подход. Теоретические основыаэродинамики были разработаны Ф. В. Ланчестером еще в 90-х годах прошлогостолетия, но очень немногие из инженеров-практиков представляли себе, о чем тамвообще идет речь[100]. Катастрофы того времени частопроисходили из-за срыва потока и штопора, но почти столь же часто виной томубыло разрушение конструкций, а так как первые пилоты редко использовалипарашюты, катастрофы эти почти всегда заканчивались трагически.

Требование к инженерной конструкции быть одновременно и надежной, илегкой было тогда внове. На крыло самолета действуют изгибающие нагрузки,весьма напоминающие нагрузки на мост. Предшествующий опыт позволял с этиминагрузками управиться без особых опасений за надежность. Но что было совершенноновым, так это действующие на крыло самолета крутящие моменты. Если непринять должных конструктивных мер, крыло самолета будет скручено.

Применение самолетов с началом первой мировой войны возросло - резкоувеличилось и число аварий. К счастью, в Англии в Фарнборо этими вопросамизанималась небольшая группа блестящих молодых инженеров, чьи имена впоследствиистали широко известны, - это лорд Черуелл, Джеффри Тейлор, ГенриТизард и "Иегова" Грин. Благодаря их усилиям к 1918 г. традиционный биплансделался самой надежной из всех конструкций, так что его считали почтинеразрушающимся. Немцам в этом отношении повезло меньше. Их техническиеавиационные эксперты не могли похвастать репутацией людей с широким кругозором.Во всяком случае, у них долгое время одна за другой следовали катастрофы,причина которых крылась главным образом в непонимании действия на крылосамолета крутящего момента.

К началу 1917 г. благодаря высоким техническим данным своих истребителейстраны Антанты достигли на западном фронте явного превосходства в воздухе.

Однако тем временем немецкий конструктор Антони Фоккер работал над созданиемнового истребителя - моноплана "Фоккер Д-8", который по своим качествампревосходил не только то, что было у союзников, но и то, чего они ждалив перспективе. Из-за критической ситуации на фронтах производство Д-8 былоускорено. Они поступили на вооружение нескольких немецких эскадрилий безпроведения достаточной программы летных испытаний. И вскоре после того,как эти самолеты начали полеты в боевых условиях, обнаружилось, что в воздушныхбоях при выводе машины из пике у него ломалось крыло. Было много жертв,в том числе среди опытнейших летчиков-истребителей. Все это заставило проанализироватьпричины неудач.

В те дни большинство самолетов были бипланами, ибо конструкция этоготипа считалась самой легкой и надежной. Однако при двигателе той же мощностимоноплан развивает большую скорость, так как не испытывает дополнительногосопротивления воздуха из-за аэродинамического взаимодействия двух близкорасположенных крыльев. Это настойчиво побуждало к разработке истребителей-монопланов.Но, хотя и без понимания действительных причин, монопланы считались конструктивноненадежными уже с 1903 г., когда в США над Потомаком отвалилось крыло знаменитогосамолета Сэмюеля Ленгли.

Крыло Д-8, как и большинства монопланов того времени, было обшито тканьюс целью придания ему желаемой аэродинамической формы. Ткань была простонатянута на силовой каркас и сама не должна была нести основных изгибающихнагрузок. Эти нагрузки воспринимались двумя параллельными деревянными лонжеронами- консольными балками, идущими в сторону от фюзеляжа. Они были соединенычерез каждые несколько дюймов рядом легких деревянных нервюр определеннойформы, на которые и натягивалась проклеенная ткань (рис. 129).

 

 

Рис. 129. Крыло моноплана, обтянутое тканью.

Когда стало известно о катастрофах с Д-8, командование немецких военно-воздушныхсил отдало приказ провести испытания конструкции. Как это обычно делалосьв те времена, готовый самолет перевернули вверх ногами и установили наиспытательный стенд, нагружая мешками с дробью, расположенными так, чтобыимитировать возникающие в полете аэродинамические нагрузки. Испытанноетаким образом крыло не обнаружило признаков слабости, оно разрушалось лишьпри нагрузке, эквивалентной шестикратному весу самолета. Правда, в настоящеевремя требуется, чтобы истребители выдерживали двенадцатикратные перегрузки,но в 1917 г. шестикратной перегрузки считалось вполне достаточно, и онаопределенно превышала те перегрузки, которые могли возникнуть в тогдашнихбоевых условиях. Другими словами, самолет, казалось бы, был вполне надежен.

Однако при стендовых испытаниях Д-8 обратили внимание на то, что разрушениесамолета начиналось в заднем лонжероне. Решили перестраховаться, и задниелонжероны на всех самолетах Д-8 заменили более толстыми и прочными. Нои после замены число аварий не сократилось, а, напротив, увеличилось. Командованиенемецких военно-воздушных сил оказалось перед фактом, что "усиление" крылапутем добавления конструкционного материала на самом деле приводит к егоослаблению.

К тому времени Фоккеру стало ясно, что на помощь от официальных умоврассчитывать не приходится, и он сам подверг Д-8 испытаниям на своем заводе.На этот раз догадались измерить перемещения крыла под нагрузкой. Оказалось,что приложенная нагрузка не только изгибает (при выводе самолета из пикеконцы крыла поднимаются относительно фюзеляжа), но и скручивает крылья,хотя к ним явным образом не приложено никаких крутящих нагрузок. И, чтоособенно важно, направление скручивания было таким, что значительно увеличивалсяугол атаки крыла, то есть его подъемная сила.

Обдумав эти результаты, Фоккер внезапно понял, что именно здесь лежитпричина не только загадочных аварий с Д-8, но и большинства неприятностейсо многими другими монопланами. Когда пилот берет ручку на себя, нос самолетаподнимается и нагрузка на крыло растет. Но одновременно крыло закручивается,и это приводит к дальнейшему увеличению подъемной силы крыла, то есть нагрузкина крыло; оно закручивается еще больше, еще больше растет нагрузка и такдо тех пор, пока пилот полностью не теряет контроль над ситуацией и крылоне отваливается. Фоккер обнаружил здесь ту форму неустойчивости, котораячасто приводит к "летальному" исходу.

Что же в действительности происходит с крылом с точки зрения теорииупругости?

 


Поделиться:



Последнее изменение этой страницы: 2019-05-07; Просмотров: 304; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.052 с.)
Главная | Случайная страница | Обратная связь