|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расчет шариковинтовой передачи
Основные геометрические параметры шариковинтовой передачи d0 — номинальный диаметр резьбы; р — шаг резьбы; dw — диаметр шарика;
d — наружный диаметр резьбы винта:
Чтобы в процессе работы не произошло раскрытия стыка между одной из гаек и корпусом, создают силу FН (Н) предварительного натяга, равную:
где С ar — скорректированная динамическая грузоподъемность шариковинтовой передачи, Н [см. ниже формулу (13.15)]; Fа — внешняя осевая сила, Н. Если на передачу, собранную с силой предварительного натяга FH, со стороны левой гайки действует осевая сила Fa, то осевые силы F а и Fn, действующие в контакте с винтом соответственно левой и правой гаек, находят по формулам:
За расчетное значение осевой силы FE в передаче принимают большее из двух: FE = FЛ или F E = FП, В передачах без предварительного натяга FE = Fa. В станкостроении шариковинтовые передачи стандартизованы. Для гаек применяют стали 9ХС, ШХ15, 18ХГТ. Винты изготавливают из сталей ХВГ, 8ХФ, 20ХЗМВФ. Рабочие поверхности закаливают до твердости
Расчет шариковинтовой передачи на прочность. Основными критериями работоспособности для хорошо смазываемых и защищенных от загрязнений передач являются сопротивление рабочих поверхностей контактной усталости и отсутствие у них пластических деформаций. Подобно подшипникам качения шариковинтовые передачи не конструируют, а подбирают по каталогу. Расчет ведут по динамической грузоподъемности для предупреждения усталостного разрушения (выкрашивания рабочих поверхностей) и по статической грузоподъемности для предупреждения пластических деформаций. В табл. 3 приведены значения базовых динамической Са и статической С0а грузоподъемностей шариковинтовьгх передач.
1. Базовая динамическая грузоподъемность С a представляет собой осевую силу в Н, которую шариковинтовая передача может воспринимать при базовой долговечности, составляющей 106 оборотов винта. 2. Базовая статическая грузоподъемность С0а представляет собой статическую осевую силу в Н, которая вызывает общую остаточную пластическую деформацию шарика, канавок винта и гайки, равную 0,0001 диаметра шарика. Базовая динамическая грузоподъемность соответствует 90%-ной надежности и распространяется на обычно применяемые стали. При отличии свойств материала от обычных, а также при повышенных требованиях к надежности передачи вычисляют значение скорректированной динамической грузоподъемности С ar по формуле:
где Км — коэффициент, учитывающий качество материала (обычная плавка К M=1, плавка с вакуумной дегазацией КМ=1,25, вакуумный переплав Км= 1,7); K p - коэффициент надежности передачи (при 90%-ной надежности Кр= 1, при 95%-ной Кр=0,85, при 97%-ной Kp=0,75); Са — базовая динамическая грузоподъемность шариковинтовой передачи (см. табл. 3). Показателем долговечности шариковинтовых передач служит ресурс, т.е. наработка до предельного состояния (усталостного выкрашивания поверхностей качения), выраженная в миллионах оборотов L или в часах L h:
где С ar — скорректированная динамическая грузоподъемность, Н; FE — расчетная осевая сила, Н; n — частота вращения винта, мин-1. Условием пригодности шариковинтовой передачи является:
где Lh — расчетный ресурс, ч; Статическая контактная прочность обеспечивается при выполнении условия:
где FE — расчетная осевая сила; С0 a — базовая статическая грузоподъемность, Н. 42. Основные типы и конструкции приводных цепей. Основы выбора и расчета цепных передач. Передачу механической энергии между параллельными валами, осуществляемую с помощью двух колес — звездочек 1 и 2 и охватывающей их цепи 3, называют цепной передачей (рис. 1). Служат для передачи вращения между удаленными друг от друга параллельными валами.
Рис.1. Цепная передача: 1 — ведущая звездочка; 2 — ведомая звездочка; 3 — цепь; 4 — натяжное устройство
Цепная передача, как и ременная, принадлежит к числу передач с гибкой связью. Гибким звеном в этом случае является цепь, входящая в зацепление с зубьями звездочек. Цепь состоит из соединенных шарнирами звеньев, которые обеспечивают подвижность или «гибкость» цепи. Зацепление обеспечивает ряд преимуществ по сравнению с ременной передачей. Цепную передачу можно классифицировать как передачу зацеплением с гибкой связью (ременная — трением с гибкой связью). Зацепление позволяет обойтись без предварительного натяжения цепи. В конструкции цепных передач для компенсирования удлинения цепи при вытяжке и обеспечения эксплуатационной стрелы провисания f ведомой ветви иногда предусматривают специальные натяжные устройства (см. рис.1). Кроме перечисленных основных элементов, цепные передачи включают смазочные устройства и ограждения. Угол обхвата звездочки цепью не имеет такого решающего значения, как угол обхвата шкива ремнем в ременной передаче. Цепные передачи можно использовать как при больших, так и при малых межосевых расстояниях. Они могут передавать мощность от одного ведущего звена 1 нескольким звездочкам 2 (рис.2). Классификация Цепные передачи разделяют по следующим основным признакам: По типу цепей: с роликовыми (рис.4, а); с втулочными (рис.4, б); с зубчатыми (рис.4, в). По числу рядов роликовые цепи делят на однорядные (см. рис.4, а) и многорядные (например, двухрядные, см. рис.4, б). По числу ведомых звездочек: нормальные двухзвенные (см. рис.1, 4, 5); специальные — многозвенные (см. рис. 2, 3). По расположению звездочек: горизонтальные (рис.5, а); наклонные (рис.5, б); вертикальные (рис.5, в).
5. По способу регулирования провисания цепи: с натяжным устройством (см. рис. 1); с натяжной звездочкой (роликом, рис.6). 6. По конструктивному исполнению: открытые (см. рис.3), закрытые (рис.7). |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 90; Нарушение авторского права страницы