Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Поле бесконечной равномерно заряженной плоскости. Напряженность поля в диэлектрике. Относительная диэлектрическая проницаемость.



1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS — заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε0, откуда
(1)
Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно.

Рассмотрим диэлектрическую пластинку, заполняющую плоский конденсатор (рис.14.5) и находящуюся, следовательно, в практически однородном внешнем поле .

В результате поляризации на гранях диэлектрика, обращенных к пластинам конденсатора, концы молекулярных диполей окажутся нескомпенсированными соседними диполями. Поэтому на правой грани, обращенной к отрицательной пластине конденсатора, окажется избыток положительного заряда с некоторой поверхностной плотностью . На противоположной стороне диэлектрика . Эти так называемые поляризационные, или связанные заряды не могут быть переданы соприкосновением другому телу без разрушения молекул диэлектрика, т.к. они обусловлены самими поляризованными молекулами. Возникновение поляризованных зарядов приводит к возникновению дополнительного электрического поля , направленного против внешнего поля . Результирующее электрическое поле Е внутри диэлектрика равно

(14.2)

Для определения применим формулу вычисления напряженности конденсатора

(14.3)

Свяжем с вектором поляризации Р. Для этого определим полный дипольный момент (во всем объеме) диэлектрика. Осуществим это двумя способами:

С одной стороны Р по определению дипольный момент единицы объема и если умножим на V, получим полный дипольный момент

(14.4)

где S - площадь пластины конденсатора.

С другой стороны рассмотрим диэлектрик как большой диполь, у которого с одной стороны заряд , а с другой и расстояние d. Отсюда

(14.5)

Приравнивая (14.4) и (14.5), получим

Подставляя в (14.3), и затем результат в (14.2), получим

Подставим значение Р из выражения (14.1), тогда

(14.6)

Величина

(14.7)

называется диэлектрической проницаемостью или относительной диэлектрической проницаемостью. Диэлектрическая проницаемость показывает во сколько раз уменьшается напряженность в диэлектрике по сравнению с напряженностью в вакууме. и , т.е. с ростом температуры диэлектрические свойства ухудшаются.

8. Электрическая индукция. Теорема Остроградского-Гаусса для элек­трической индукции. Поведение нормальной составляющей поля на границе раздела диэлектриков.

Теорема Остроградского-Гаусса.

Электрическая индукция , величина, характеризующая электрическое поле в веществе наряду с напряженностью (Е): D = eЕ, где e - диэлектрическая проницаемость вещества. Поток электрической индукции через замкнутую поверхность определяется свободными зарядами, находящимися внутри этой поверхности (т. е. не зависит от связанных зарядов, входящих в состав нейтральных атомов и молекул).по определению равна

,где - диэлектрическая проницаемость среды.

Для точечного заряда электрическая индукция равна

.

Поток вектора электрической индукции (скаляр - число линий электрической индукции):

в однородном электрическом поле

.

в неоднородном электрическом поле разбиваем площадку на бесконечно малые элементы, тогда

.

Для точечного заряда поток вектора электрической индукции через сферическую поверхность, охватывающую заряд, равен

,
что верно для любой поверхности, т.к. линии D непрерывны. Если поверхность не охватывает заряд, то , т.к. число входящих линий D равно числу входящих.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).

Рисунок 1.6.1.

Поле плоского конденсатора

Рисунок 1.6.2.

Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности

 

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением

Согласно принципу суперпозиции, напряженность  поля, создаваемого обеими пластинами, равна сумме напряженностей  и  полей каждой из пластин:

Внутри конденсатора вектора  и  параллельны; поэтому модуль напряженности суммарного поля равен

 

Вне пластин вектора  и  направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

 

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

 

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

 (сферический конденсатор),

 (цилиндрический конденсатор).

 

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

 

Таким образом, при параллельном соединении электроемкости складываются.

Рисунок 1.6.3. Параллельное соединение конденсаторов. C = C1 + C2
Рисунок 1.6.4. Последовательное соединение конденсаторов.

При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны  и  Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,

 


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 298; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь