Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Сравнение циклов поршневых двигателей внутреннего сгорания
Степень совершенства любого цикла определяется значением его термического КПД. Обычно сравнение циклов проводится в T, S-диаграмме. При этом применяют два метода: 1) сравнение площадей в T, S-диаграмме; 2) сравнение среднеинтегральных температур в процессе подвода и отвода теплоты в циклах.
ным подводом теплоты, т. е. площадь 6537 больше, то КПД цикла с подводом теплоты при больше КПД цикла с подводом теплоты при , Сравнение циклов с изохорным и изобарным подводом теплоты по среднеинтегральным температурам. Как было указано ранее, термический КПД всех циклов определяется по одному и тому же уравнению где – среднеинтегральная температура процесса отвода количества теплоты, °С; – среднеинтегральная температура процесса подвода количества теплоты, °С. При сравнении циклов с разными степенями сжатия, рис. 57, получаем, что температура изобарного подвода теплоты больше, чем температура изохорного подвода теплоты, а температура в обоих циклах одинакова. Отсюда следует, что Цикл двигателя Стирлинга Двигатель Стирлинга имеет внешний подвод теплоты через теплопроводящую стенку. Количество рабочего тела (им может быть воздух), заключенного в рабочем объеме двигателя, постоянно и несменяемо. В этом заключается одно из преимуществ такого двигателя перед двигателями внутреннего сгорания, так как в качестве горячего источника теплоты в этих условиях могут использоваться кроме продуктов сгорания органических топлив ядерная энергия, солнечная батарея и др. При подводе теплоты через теплопроводящую поверхность в замкнутый объем двигателя рабочее тело расширяется (поршень совершает рабочий ход). Затем теплота отбирается холодным источником теплоты, рабочее тело сжимается и таким образом возвращается в исходное состояние, завершая рабочий цикл. Однако практическая невозможность частой смены температуры теплопроводящей стенки при подводе и отводе теплоты привела к необходимости усложнения конструкции двигателя – создания в нем постоянных горячей и холодной полостей. В связи с этим рабочее тело во время цикла должно последовательно перемещаться из горячей полости в холодную и обратно. Такие перемещения в двигателях Стирлинга обеспечиваются вытеснителем и поршнем, движущимся по определенному закону в одном цилиндре. Двигатель Стирлинга может иметь два сообщающихся между собой цилиндра. В этом случае в одном цилиндре перемещается вытеснитель, в другом – поршень. Работа двигателя может быть условно разделена на четыре стадии, рис. 58. В первой стадии все количество рабочего тела находится в холодной полости Х. На второй стадии поршень 3 перемещается вверх, сжимает рабочее тело в холодной полости. Температура рабочего тела при этом сохраняется постоянной за счет отвода теплоты через стенки цилиндра холодному источнику теплоты (изотермический процесс сжатия 1–2). На третьей стадии вытеснитель 1 перемещается вниз, вытесняя рабочее тело из холодной полости Х в горячую Г при постоянном объеме Рис. 58. Схема изменения объемов холодной и горячей полостей |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 247; Нарушение авторского права страницы