Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЦИКЛЫ ГАЗОТУРБИННЫХ УСТАНОВОК
Газотурбинные установки (ГТУ) обладают рядом преимуществ по сравнению с поршневыми двигателями. Они имеют относительно небольшие габариты и малую массу, в них нет деталей с возвратно-поступательным движением, могут выполняться достаточно большими единичными мощностями. В газовых турбинах отсутствует основной недостаток поршневых двигателей – невозможность расширения рабочего тела в цилиндре двигателя до атмосферного давления. Практическое применение нашли ГТУ со сгоранием топлива при постоянном давлении и постоянном объеме. Им соответствуют идеальные циклы с подводом теплоты при и . Газотурбинная установка представляет собой тепловой двигатель, объединяющий принцип работы паросиловой установки и поршневого двигателя внутреннего сгорания. С одной стороны, в газотурбинной установке, так же, как в паросиловой установке, имеется специальное устройство, предназначенное только для сжигания топлива, а расширение рабочего тела осуществляется в турбине. С другой стороны, в газотурбинной установке, так же, как и в поршневом двигателе внутреннего сгорания, рабочим телом является газообразные продукты сгорания топлива. Простейшая газотурбинная установка, рис. 60, состоит из компрессора К, газовой турбины ГТ, на одном валу с которыми находятся электрогенератор ЭГ или иной потребитель механической энергии и топливный насос ТН. Атмосферный воздух адиабатно сжимается в компрессоре и
турбину, где адиабатно расширяются до атмосферного давления и выбрасываются в атмосферу. Там они смешиваются с воздухом и охлаждаются до его температуры при атмосферном давлении. Таким образом, цикл газотурбинной установки состоит из двух адиабатных процессов сжатия и расширения и двух изобарных процессов подвода и отвода теплоты. Цикл ГТУ с подводом теплоты при постоянном давлении Такой цикл называется циклом Брайтона и состоит из двух изотерм подвода и отвода теплоты и двух адиабат сжатия и расширения и представлен в p, V- и T, S-диаграммах на рис. 61.
Рис. 61. Цикл ГТУ с подводом теплоты при постоянном давлении
В адиабатном процессе 1–2 происходит сжатие рабочего тела от параметров точки 1 до параметров точки 2. В изобарном процессе 2–3 к рабочему телу подводится количество теплоты от источника теплоты. По адиабате 3–4 рабочее тело расширяется до первоначального давления и по изобаре 4–1 приводится к параметрам точки 1 с отводом теплоты к приемнику теплоты.
Из сопл продукты сгорания поступают на лопатки газовой турбины 3, здесь кинетическая энергия газов переходит в энергию вращения вала газовой турбины, совершая при этом полезную работу, а затем выбрасываются в атмосферу через выхлопной патрубок. Характеристиками цикла являются: степень повышения давления в компрессоре степень изобарного расширения Количество теплоты, подводимой по изобаре 2–3: Количество теплоты, отводимой по изобаре 4–1: Подставляя эти выражения в формулу для термического КПД, получим: . Найдем выражения температур , , через начальную температуру рабочего тела. Для адиабаты 1–2: , Для изобары 2–3: , Для адиабаты 3–4: Тогда термический КПД: Отсюда следует, что термический КПД увеличивается с возрастанием степени повышения давления и показателя адиабаты. Однако термический КПД еще не может служить мерой экономичности установки. При рассмотрении работы реальных ГТУ необходимо отдельно учитывать потери на необратимость процессов в турбокомпрессоре и газовой турбине. Расход энергии на трение в компрессоре влечет за собой увеличение температуры рабочего тела, поскольку работа трения превращается в теплоту и воспринимается рабочим телом, а это, в свою очередь, приводит к увеличению работы, затраченной на сжатие воздуха. Из рис. 63 видно, что термический цикл ГТУ с подводом теплоты при в T, S-диаграмме изображается площадью 12341, а реальный цикл – площадью 12 ' 32 ' 1, где линия 1–2 ' представляет собой политропу сжатия в компрессоре, а линия 3–4 ' – политропу расширения в турбине.
Теоретическая удельная работа сжатия в компрессоре: а действительная или где – адиабатный КПД турбокомпрессора, равен отношению В настоящее время достигает . Расширение газа в проточной части турбины сопровождается потерями на трение о стенки сопл, лопаток и на завихрение потока, в результате чего часть кинетической энергии рабочего тела превращается в теплоту и энтальпия газа на выходе из турбины больше энтальпии обратимого процесса расширения Теоретическая удельная работа расширения в турбине равна , действительная . Отношение внутренней действительной удельной работы расширения реальной турбины к теоретической удельной работе идеальной турбины называют внутренний относительный КПД газовой турбины У современных турбин Действительная полезная (эффективная) удельная работа которая может быть получена в газотурбинной установке, определяется выражением Отношение полезной работы ГТУ к количеству затраченной теплоты называют эффективным КПД ГТУ: Кривые зависимости и от имеют следующий вид, рис. 64.
Рис. 64. Кривая зависимости теоретического и и эффективного КПД |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 282; Нарушение авторского права страницы