Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ввод плазменного газа; 4 – изделие; 5 – канал для подачи присадочного порошка.



Для получения плазмы используются электролитический дуговой разряд, через который с помощью сопла продувается плазмообразующий газ (аргон, азот, воздух или их смесь). Питание плазматрона осуществляется от мощного электрического источника с напряжением 200–500 В и током 300–400 А. Необходима стабилизация дуги, чтобы горячая струя не замкнулась на сопло и не расплавила его, а также с целью некоторой фокусировки. Она осуществляется аксиальным потоком газа, либо суженными стенками охлаждаемого сопла.

Плазменная обработка используется в процессах, требующих высокотемпературного концентрированного нагрева: резка, прошивка отверстий, микро- и макросварка, нанесение покрытий, восстановление изношенных деталей, плавка.

Наплавка износостойких покрытий осуществляется с целью повышения эксплуатационных свойств детали.

Применяют порошкообразные материалы со специальными свойствами – высокой твердостью, повышенной износостойкостью, коррозионно- и термостойкостью (оксиды или карбиды бора, вольфрама). Детали получаются с дешевой сердцевиной из конструктивных материалов, а на ответственных участках создаются необходимые свойства. Значительно снижаются расходы дорогостоящих легирующих материалов. Толщина слоев может достигать нескольких мм. Технология: наносимый материал используется в виде пасты; происходит расплавление и сварка слоя наплавляемого материла с основным материалом. В этом случае применяются плазменные горелки косвенного действия.

Напыление. Напыляемый материл нагревается в плазматроне. Температура подложки в зависимости от цели напыления может быть различной. Формируются слои небольшой толщины – от нескольких мкм до одного мм. Для увеличения адгезии напыленного слоя стремятся повысить степень химического воздействия покрытия с подложкой за счет ее разогрева или введения промежуточных химически активных слоев.

Плазменная резка. Достоинства: обрабатываются любые металлы толщиной до 100–150 мм, меньшая ширина реза чем при газовой резке, лучшая поверхность, меньшая зона термических изменений. Скорость: 0,5–1,5 см/с в зависимости от толщины.

Для плазменной резки используются плазматроны прямого действия. Плазмообразующий газ – аргон, азот, водород или воздух. При микроплазменной резке ток 50–100 А, толщина резки до 8 мм, ширина реза до 1-го мм.

 


 

31. Поверхностные покрытия и антикоррозийная защита деталей РЭС: назначение и классификация покрытий, требования к покрытиям, обозначения покрытий, металлические и неметаллические покрытия.

Покрытием называется дополнительный слой из другого металла или нескольких слоев разных материалов, нанесенных на поверхность детали для придания ее поверхности свойств, отличных от свойств основного материала.

В зависимости от назначения различают покрытия защитные, защитно-декоративные и специальные.

Защитные покрытия предназначаются для защиты изделия от коррозии (кадмиевые, цинковые, оловянные и оксидные покрытия).

Защитно-декоративные покрытия на ряду с защитой изделий от коррозии придают ему красивый внешний вид (медь-никель-хром, никель-хром, никелевые, золотые, серебряные).

Специальные покрытия придают поверхностям изделий специфические свойства, например повышают изоляционную способность, увеличивают поверхностную электропроводность, повышают паяемость, отражают способность с одновременной защитой от коррозии (серебро, золото, палладиевые, радиевые, хромовые) и т.д.

Покрытия наносят на металлы, керамику, стекло и пластмассы.

В качестве материала покрытий служат металлы, окислы, соли металлов, пластмассы, лаки и краски.

Толщина покрытий лежит в интервале от десятых долей до сотен микрометров.

Выбор вида и толщины покрытия определяется материалом и назначением детали, особенностями технологии её изготовления и условиями эксплуатации.

Для РЭС одно из главных назначений покрытий – обеспечение работоспособности в различных условиях эксплуатации. Условия эксплуатации классифицируются следующим образом:

– легкие (Л) – в закрытых отапливаемых помещениях;

– средние (С) – в закрытых неотапливаемых помещениях;

– жесткие (Ж) – на открытом воздухе под навесом (-50 – +50º С), влажность до 90% при +40º С;

– особо жесткие (ОЖ) – на открытом воздухе в морском климате.

При выборе материала металлических защитных покрытий нужно стремиться не допускать образования гальванических пар, вызывающих электрохимическую коррозию основного металла детали.

Исходя из конструктивных требований и требований к технологичности и функционированию изделий при выборе покрытия деталей необходимо придерживаться следующих требований:

1. Должна обеспечиваться сопрягаемость деталей с учетом толщины покрытия;

2. На литые детали наносить только лакокрасочные покрытия;

3. В покрываемых деталях должны отсутствовать узкие и глубокие каналы и отверстия, необходимы закругления кромок или фаски 0,2 мм;

4. Детали с размерами по 6–7 квалитету точности подвергать только химическим методам покрытий (оксидирование, фосфотирование) практически не изменяющим размер.

5. Без покрытий применять золото, платину, палладий, радий, серебро, сплавы вольфрама, бериллиевую бронзу, сплавы титана.

Классификации покрытий производится по материалу пленки и способу ее нанесения.

По материалу пленки различают покрытия:

– металлические;

– неметаллические;

– лакокрасочные.

По способу нанесения различают:

– непосредственное;

– гальваническое;

– химическое.

Обозначение металлических и неметаллических покрытий производится согласно ГОСТ 9.306-85, с использованием буквенно-цифровой системы.

Для металлических покрытий – буквы указывают металл покрытий, цифра после буквы – его толщину в мкм, буква в конце – характеристику или характер дополнительной обработки.

Кд 15. хр. – кадмиевое толщиной 15 мкм, хромированное.

М 30. Н18. х.б. – медь 30 мкм, никель 18 мкм, хром 1 мкм, блестящее и т.д.

Для неметаллических покрытий указывают способ нанесения и характер дополнительной обработки или свойства.

Например: Хим. Окс. лкп. – окисное покрытие, нанесенное химическим способом с дополнительным лакокрасочным покрытием.

Ан. Окс. из. – окисное покрытие, нанесенное электрохимическим способом, электроизоляционное.




Технология изготовления деталей из металлических порошков: общая характеристика методов порошковой металлургии, производство порошков, формование заготовок из порошковых материалов, спекание и окончательная обработка изделий.

ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и прессование. В порошковой же металлургии изделия производят из порошков с размерами частиц от 0,1 мкм до 0,5 мм путем формования холодным прессованием и последующей высокотемпературной обработки (спекания). Порошковая металлургия экономична в отношении материалов и, как и традиционные методы металлообработки, позволяет получать детали с нужными механическими, электрическими и магнитными свойствами. Продукция порошковой металлургии используется в различных отраслях промышленности, в том числе в авиакосмической, электронной и на транспорте.

Металлические порошки получают восстановлением металлов из их окислов или солей, электролитическим осаждением, распылением струи расплавленного металла, термической диссоциацией и механическим дроблением. Наиболее распространен способ восстановления металлов (железа, меди или вольфрама) из соответствующих окислов с последующим электрорафинированием. Механическим дроблением получают порошки (с частицами нужной крупности и формы) хрома, марганца, железа и бериллия.

Технологический процесс изготовления изделий из металлических порошков состоит из следующих операций: подготовка смеси для формования, формование заготовок или изделий и их спекание. Формование заготовок или изделий осуществляется путем холодного прессования под большим давлением (30–1000 МПа) в металлических формах. Спекание изделий из однородных металлических порошков производится при температуре, составляющей 70–90% температуры плавления металла. В смесях максимальная когезия достигается вблизи температуры плавления основного компонента, а в цементированных карбидах – вблизи температуры плавления связующего. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере (водород, оксид углерода), в атмосфере нейтральных газов (азот, аргон) или в вакууме. Круг изделий, изготавливаемых методами порошковой металлургии, весьма широк и непрерывно расширяется. К ним относятся зубчатые колеса, рычаги, кулачки и поршни для автомобилестроения, машиностроения, энергетики, промышленности средств связи, строительной, горнодобывающей и авиакосмической промышленности. Из ленты, полученной холодной прокаткой никелевого порошка, изготавливают монеты (например, канадский пятицентовик). Порошок железа используется в качестве носителя для тонера в ксероксах, а также в качестве одного из ингредиентов изделий из зерновых продуктов и хлеба повышенной питательности. Алюминиевый порошок служит компонентом ячеистого бетона, красок и пигментов, твердого ракетного топлива

 33 Технологические приемы изготовления шкал, надписей и рисунков: гравирование, фотогравирование, нанесение надписей литографическим способом и декалькоманией, тиснение, сеткография.

В РЭА применяются шкалы отсчетных устройств, таблички и фирменные планки, выполненные на основаниях из алюминиевых и медных сплавов, пластмассы, картона и других материалов.

Шкалы являются основной частью любого отсчетного устройства и представляют ряд делений и знаков, равномерно или неравномерно распределенных на прямой линии, окружности или части ее.

Технологический процесс изготовления шкал включает следующие этапы:

1Получение заготовки;2Нанесение штриховки и знаков;3Отделка шкал;

4Контроль качества изображения;

Заготовки шкал в зависимости от их размеров и конфигурации получают штамповкой, литьем под давлением с последующее механической и термической обработкой, резанием и т.д.

Нанесение штрихов, надписей и рисунков производится следующим образом:

– гравированием;– фотографированием;– литографическим способом;

– теснением; – сеткографией и др.


Гравирование

Сущность процесса гравирования заключается в переносе на деталь в определенном масштабе изображения, воспроизведенного в трафарете с шаблона с помощью режущего инструмента, укрепленного в рабочей головке гравировального станка.

Основными элементами гравировального станка являются два стола – на одном располагают шаблон – на другом – заготовку, и пантограф – устройство точной механической передачи движения от передвигающегося по шаблону щупа к вращающемуся резцу. В результате на заготовке воспроизводится рисунок, подобный шаблону. Изображение может быть уменьшено или увеличено в зависимости от отношения плеч пантографа.

Площадь знака при гравировании формируется в виде впадин определенной конфигурации.

Режущим инструментом для нанесения знаков на станках с пантографом являются резцы-фрезы. Резцы изготавливают из углеродистой инструментальной стали марок У10, У12, быстрорежущей стали марки Р18, твердого сплава Т15К6.

Форма рабочей части резца фрезы определяется требуемой формой обозначений.

Фотогравирование

Фотогравированием можно наносить изображение на основание из любых материалов. Применяют два способа:

1. Фотопечатание;2Фотохимический.

Фотопечатный способ состоит в том, что изображение с негатива путем светокопирования переносится на заготовку, покрытую фотоимульсией. Подготовленные заготовки укладывают на копировальную установку слоем эмульсии вверх, на нее укладывают выполненные фотографическим способом негатив и включают освещение.

После экспонирования заготовки помещают в ванну с раствором анилиновой краски на 1–2 минуты (~25 г/л). Окрашенные заготовки проявляют в холодной воде. Необлученные участки эмульсии вымываются и на поверхности заготовки остается окрашенное изображение.

Фотохимический способ во многом аналогичен фотопечатному, но отличается от него тем, что можно получить рельефное изображение на заготовках из алюминия, латуни или стали. Рисунок может быть получен в виде выступов основного металла на стравленном и окрашенном поле шкалы или в виде впадин, которые затем окрашиваются краской необходимого цвета.

Процесс нанесения рисунков и надписей при фотохимическом способе состоит из следующих операций:

– подготовка поверхности заготовки;

– нанесение светочувствительной кислотостойкой эмульсии;

– нанесение рисунка на эмульсию путем светокопирования;

– проявление рисунка;

– закрепление рисунка в муфельной печи при t=300–400 C;

– электрохимическое или химическое травление мест заготовок, не защищенных кислотоупорной эмульсией;

– отделочные операции и т.д.

Получение выпуклых или вогнутых изображений зависит от того, засвечивается при экспонировании изображение или фон.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 219; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь