![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Непрерывная и дискретная динамика.
Исследование динамики аэрозолей в среде (в том числе в воздухе), необходимо определить, с точки зрения процессов переноса. В свободно - молекулярном режиме молекулы среды перемещаются по прямой, пока не столкнутся с другой молекулой, после чего, молекула изменяет направление, до того момента, пока вновь не столкнётся с другой молекулой, и так далее. Среднее расстояние, пройденное молекулой между столкновениями с другими молекулами, называется длиной свободного го пробега. В зависимости от относительного размера частицы, находящейся в среде и средней длины свободного пробега, отличают два случая. · Если размер частицы намного больше, чем средняя длина свободного пробега окружающих молекул, система ведет себя, как непрерывная среда. Движение такой частицы подчиняется законам диффузии. · В другом случае, если частица намного меньше, чем средняя длина свободного пробега окружающих молекул, то она (частица) ведёт себя как большая молекула. В этом случае говорят о свободно - молекулярный режим. Ключевой в нашем случае, безразмерный параметр, который определяет характерные свойства среды относительно частицы, - число Кнудсена.
где λ - длина свободного пробега, D – диаметр частицы, а R, соответственно, её радиус. Таким образом, число Кнудсена - отношение двух метрических параметров. Прежде, чем обсуждать роль числа Кнудсена, мы должны рассмотреть вычисление средней длины свободного пробега для пара. Так же необходимо вычислить среднюю длину свободного пробега для чистого газа и для газов, составленных из смесей нескольких компонентов. Заметим, что воздух, в основном, состоит из смеси кислорода с азотом, однако общепринято говорить о средней длине свободного пробега воздуха, Начнём с самого простого случая, когда частица, находится в чистом газе B. Если нас интересует природа газа – носителя, то мы должны рассчитать средний путь свободного пробега, который появляется при определении числа Кнудсена, -
где MB - молекулярный вес молекулы B. Отметим, что большие молекулы перемещаются более медленно, в то время как средняя скорость газа увеличивается с температурой. Средняя скорость молекулы азота при температуре 298К, согласно (8.2) равна 474 м/c, а кислорода – 444 м/c. Давайте оценим то, что случается с молекулой B в течение единицы времени, скажем, секунды. В течение этой секунды молекула перемещается, в среднем, на расстояние, равное этому промежутку времени (секунда), умноженному на скорость молекулы. Если в течение той секунды молекула подвергается некоторому числу столкновений – Zbb, то ее средняя длина свободного пробега будет равна, по определению,
Таким образом, чтобы вычислить среднюю длину свободного пробега молекулы, мы должны сначала вычислить число столкновений Zbb. Пускай,
и средняя длина свободного пробега:
Видно, что чем больше размер молекулы, К сожалению, даже притом, что (2.5) обеспечивает достаточно неплохую зависимость длины свободного пробега от газовой концентрации и размера молекулы, она не удобна для использования, потому что необходимо знать диаметр молекулы
где Таким образом, для стандартных атмосферных условий, если диаметр частицы является большим, чем приблизительно 0.2 Теперь перейдём к рассмотрению более интересного случая – определению длины свободного пробега газа в бинарной смеси. Если мы интересуемся диффузией молекулы пара к частице, которые содержатся в фоновом газе B (например, в воздухе), тогда описание диффузионного процесса, зависит от значения числа Кнудсена, определение которого основано на среднем длине свободного пробега
теперь мы должны оценить
где
и
Отметим, что молекулярная концентрация
Непрерывный режим. Неустановившаяся диффузия молекул вида A к поверхности частицы радиуса
где c(r, t) – концентрация молекул А, а
где
Теперь, комбинируя (2.11) и (2.13), получим:
Если
решение (2.14) в граничных условиях (2.5) - (2.17), будет выглядеть так:
Временная зависимость концентрации в любом радиальном положении r дается третьим членом на правой стороне (2.18). Отметим, что для больших значений t, значение верхнего предела интегрирования приближается к нулю и профиль концентрации приближается к установившемуся состоянию, задаваемому
Полный поток молекул А (молей в секунду) к частице обозначен Jc, индекс c показывает, что режим непрерывный (continuum), и задаётся, как:
или, используя (2.19) и (2.13), как
Если Массовый баланс на растущей или испаряющейся частице:
где
Когда
Использование независимого от времени установившегося профиля, заданного (2.19), для вычисления размера частицы во времени (11.24) может казаться противоречивым. Использование установившегося диффузионного потока, для вычисления темпа роста частицы подразумевает, что профиль концентрации пара около частицы достигает установившейся величины прежде, чем произойдёт заметное изменение величины молекулы. Так как рост действительно происходит в сотни раз медленнее чем диффузия, профиль около частицы фактически всегда остается в ее стационарном значении.
|
Последнее изменение этой страницы: 2019-10-03; Просмотров: 192; Нарушение авторского права страницы