Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
РАЗВИТИЕ ЛОГИЧЕСКОГО МЫШЛЕНИЯ УЧАЩИХСЯСтр 1 из 15Следующая ⇒
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ БЛАГОВЕЩЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДПГОГИЧЕСКИЙ УНИВЕРСИТЕТ Физико-математический факультет Кафедра алгебры и геометрии
РАЗВИТИЕ ЛОГИЧЕСКОГО МЫШЛЕНИЯ УЧАЩИХСЯ ПРИ РЕШЕНИИ ЗАДАЧ НА ПОСТРОЕНИЕ (НА ПЛОСКОСТИ)
Дипломная работа Выполнила: Гулевич Екатерина Владимировна студентка 5 курса ОЗО Научный руководитель: Щуренкова И.К. Старший преподаватель кафедры алгебры и геометрии Работа защищена « ____» __________________ 2007г. Оценка ________________________________ Председатель ГАК ________________________________ (подпись) Благовещенск 2007 СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 4 1. ЛОГИЧЕСКОЕ МЫШЛЕНИЕ И ЕГО РАЗВИТИЕ ПРИ ОБУЧЕНИИ МАТЕМАТИКЕ. 7 1.1. Мышление: его закономерности и условия развития. 7 1.2. Математическое мышление. 15 1.2.1. Общая характеристика развивающегося математического. 15 мышления школьников. 15 1.2.2. Основные компоненты математического мышления и дидактические пути их развития у учащихся. 28 1.3. Развитие мышления при обучении математике. 42 1.3.1. Средства и условия развития мышления. 42 1.4. Развитие логического мышления при обучении математике. 47 1.4.1. Актуальность проблемы развития логического мышления учащихся. 47 1.4.2. История проблемы развития логического мышления учащихся. 51 1.4.3. Содержание проблемы развития логического мышления при обучении математике в школе. 53 1.4.4. Пути решения проблемы развития логического мышления учащихся. 55 1.5. Развитие логического мышления в геометрии. 58 1.5.1. Задачи преподавания геометрии в школе. 58 1.5.2. Чертеж учит думать. 60 2. МЕТОДИКА ОБУЧЕНИЯ РЕШЕНИЮ ГЕОМЕТРИЧЕСКИХ ЗАДАЧ НА ПОСТРОЕНИЕ, С ЦЕЛЬЮ РАЗВИТИЯ ЛОГИЧЕСКОГО МЫШЛЕНИЯ УЧАЩИХСЯ.. 64 2.1. Роль задач в обучение, роль задач в развитие логического мышления. 64 2.1.1. Общее понятие задачи. 64 2.1.2. Роль задач в обучении математике. 65 2.1.3. Роль математических задач в развитии мышления. 69 2.1.4. Значение геометрических задач. 72 2.1.5. Классификация геометрических задач. 73 2.2. Характеристика задач на построение. 76 2.2.1. Определение задачи на построение. 77 2.2.2. Некоторые вопросы теории геометрических построений. 79 2.2.3. Выполнение геометрических построений. 83 2.2.4. О некоторых вопросах методики обучения решению задач на построение. 85 2.2.5. Введение задач на построение. 86 2.2.6. Этапы решения задачи на построение. 89 2.2.7. Методы решения задач на построение. 103 2.3. Влияние задач на построение на развитие логического мышления. 119 3. ПЕДАГОГИЧЕСКИЙ ЭКСПЕРИМЕНТ. 121 3.1. Замысел эксперимента. Программа эксперимента. 121 3.2. Описание проведения эксперимента и его результаты. 124 ЗАКЛЮЧЕНИЕ. 136 БИБЛИОГРАФИЯ.. 137 ПРИЛОЖЕНИЯ.. 141 ВВЕДЕНИЕ
В программе по математике для средней общеобразовательной школы, разработанной в соответствие с основными направлениями реформы общеобразовательной школы, подчеркивается, что развитие логического мышления учащихся является одной из основных целей курса геометрии. Можно ли считать, что «знающий» и мыслящий» человек – одно и то же? Каждый год первого сентября с первым звонком миллионы детей садятся за парты, чтобы овладеть знаниями. В течение сложных лет они усваивают сложную систему научных сведений, учатся их анализировать, сравнивать, обобщать, применять к решению учебных, практических задач. «Век живи – век учись» – гласит народная мудрость. Но школа должна не только формировать у учащихся прочную основу знаний, умений и навыков, но и максимально развивать им умственную активность: учить мыслить, самостоятельно обновлять и пополнять знания, сознательно использовать их при решение теоретических и практических задач. Развитие умственной активности происходит в процессе усвоения знаний, однако не всякое усвоение обеспечивает эту активность. Необходима его особая организация, при которой учащиеся развивают свое мышление, интересы, склонности. Развитие умственной активности при усвоение знаний – важный источник формирования личности ученика. Тема дипломной работы: Развитие логического мышления учащихся при решение задач на построение (на плоскости). Актуальность дипломной работы заключается в том, что проблема развития логического мышления должна иметь свое отражение в школьном курсе геометрии в силу недостаточности подготовки учащихся в этой части, в силу большого числа логических ошибок, допускаемых учащимися в усеваемом содержании геометрического материала. Объектом исследования является учебно-воспитательный процесс. Предмет исследования – геометрические задачи на построение. Гипотеза дипломного исследования состоит в том, что развитию логического мышления способствует решение геометрических задач, и в частности задач на построение. Проблема исследования заключается в особой организации процесса обучения решению геометрических задач на построение, при которой через решение этих задач учащиеся будут активно развивать логическое мышление. Цель исследования: определение оптимальных условий и конкретных методов развития логического мышления при решение задач на построение. Выделяя этапы достижения цели исследования, мы поставили следующие задачи: Дать характеристику мышления как психологического процесса и рассмотреть его виды; Выделить пути развития мышления при обучение учащихся в средней школе; Выяснить какую роль играют учебные задачи в обучение математики, в частности, в геометрии. Дать характеристику задач на построение и выяснить, как они влияют на развитие логического мышления; Разработать систему уроков с рекомендациями по развитию логического мышления через решение задач на построение. Методами исследования являются: Исследование психологической и методической литературы; Опыт работы в 7-х классах (геометрия) общеобразовательной школы; Наблюдение за учебной деятельностью учащихся в 7 – 9 классах общеобразовательной школы. Практическая значимость работы заключается в использовании разработанных уроков с рекомендациями при изучение учащимися темы «Геометрическое построение» на уроках геометрии в средней школе. Структура диплома определена логикой и последовательностью поставленных задач. Дипломная работа состоит из введения, трех глав, заключения и приложения. В первой главе раскрывается необходимость воспитания в учащихся творческой личности, с целью развития логического мышления. В ней раскрываются понятия: мышление, математическое мышление, логическое мышление и его развитие. Вторая глава посвящена развитию мышления учащихся на уроках геометрии через решение геометрических задач, в частности задач на построение. В третьей главе описывается педагогический эксперимент – его замысел, программа, проведение и получение результата. ЛОГИЧЕСКОЕ МЫШЛЕНИЕ И ЕГО РАЗВИТИЕ ПРИ ОБУЧЕНИИ МАТЕМАТИКЕ Математическое мышление. Общая характеристика развивающегося математического Мышления школьников. Основные компоненты математического мышления и дидактические пути их развития у учащихся. Конкретное мышление Специфика математического мышления проявляется не только в том, что ему присущи все качества научного мышления, но и в том, что для него характерны особые формы (разновидности проявления мышления), которые в ходе их описания обычно выделяются специальными терминами: конкретное и абстрактное мышление, функциональное мышление, интуитивное мышление и т.п. Так как в процессе обучения математике обычно используются так называемые конкретно – индуктивные или абстрактно-дедуктивные методы обучения, то, естественно, возникает необходимость (из дидактических соображений) говорить о конкретном (предметном) или абстрактном мышлении школьников. Конкретное (предметное) мышление – это мышление в тесном взаимодействии с конкретной моделью объекта. Различаются две формы конкретного мышления: 1) неоперативное (наблюдение, чувственное восприятие); 2) оперативное (непосредственные действия с конкретной моделью объекта). Неоперативное конкретное мышление чаще всего проявляется у дошкольников и младших школьников, которые мыслят лишь наглядными образами, воспринимая мир лишь на уровне представлений. То, что школьники на этом уровне развития не владеют понятиями, ярко иллюстрируется опытами психологов школы Ж. Пиаже. Рассмотрим некоторые из них: 1. Детям демонстрируются два сосуда (рис. 2, а) одинаковой формы и размеров, содержащие поровну темную жидкость. Дети легко устанавливают равенство жидкостей в первом и втором сосуде. Далее, на виду у детей жидкость из одного сосуда переливают в другой более высокий и узкий (рис. 2, б) и предлагают сравнить количество жидкости в этом сосуде и оставшемся нетронутым. Дети утверждают, что в новом сосуде жидкости стало больше. 2. Детям демонстрируют цветы: васильки и маки (например, 20 маков и 3 василька) и спрашивают, чего больше: цветов или маков? И хотя дети как будто бы знают, что и васильки и маки суть цветы, они отвечают, что маков больше. 3. Через полую непрозрачную трубку (рис.3) на виду у детей пропускают проволоку с фиксированными на ней шариками (красным, белым, синим, зеленым), пока все шарики не скроются в трубке. Дети наблюдают порядок «вхождения» шариков в трубку. Затем начинают обратное движение проволоки, предлагая детям назвать цвет шарика, который теперь выйдет первым, вторым и т. д. Дети обычно называют шарики в том порядке, в каком они «входили» в трубку. Дело в том, что неоперативное мышление детей еще непосредственно и полностью подчинено их восприятию и потому они пока не могут отвлечься, абстрагироваться с помощью понятий от некоторых наиболее бросающихся в глаза свойств рассматриваемого предмета. В частности, думая о первом сосуде (см. первый опыт Ж. Пиаже), дети смотрят на новый сосуд и им представляется, что жидкость в нем занимает больше мест а, чем раньше (уровень жидкости стал выше). Их мышление, протекающее в форме наглядных образов, приводит к выводу (следуя за восприятием), что жидкости в сосудах стало непоровну. В процессе обучения математике в среднем и старшем звене школы воздействие на неоперативное конкретное мышление учащихся проявляется при использовании различных наглядных » пособий, диафильмов, кино и телевидения. Возвращаясь к описанным выше трем опытам Ж. Пиаже, отметим, что сам Пиаже объясняет ошибочные ответы детей отсутствием у них способностей к особым мыслительным операциям (постоянство целого, устойчивое отношение части к целому и обратимость), без формирования которых невозможно овладение понятием натурального числа. Вместе с тем Ж. Пиаже утверждает (и это утверждение согласуется с мнениями многих советских психологов), что оперативное конкретное мышление является более действенным для подготовки детей к овладению абстрактными понятиями. Самостоятельная мыслительная деятельность выделяется именно по мере развития практической деятельности, лежащей в основе развивающейся психики ребенка. Конкретное мышление играет большую роль в образовании абстрактных понятий, в конструировании особых свойств математического мышления, развитие которых способствует познанию математических абстракций. Поэтому психологи рекомендуют широко использовать различные дидактические пособия (например, геоплан Гаттеньо, линеечки Кюзинера и т. п.), с которыми школьники могут действовать непосредственно в процессе обучения. В процессе обучения математике роль конкретного мышления особенно велика в младших и средних классах. В целях развития у учащихся этого типа мышления, помимо традиционного применения наглядных средств в обучении, необходимо учить школьников общим рассуждениям на конкретных (частных) примерах. В старших классах мера конкретного в процессе познания убывает, в то время как само конкретное меняет свою форму, на смену конкретному приходит абстрактное, которое должно выступать как целесообразное обобщение конкретного. Особенно полезно использовать это положение при введении в новую тему. В учебном пособии И. К. Андронова и А. К. Окунева таким путем рассматривается, например, вопрос о введении понятия о тангенсе острого угла (решается задача о целесообразном наклоне крыши здания, затем вводится понятие тангенса угла наклона и, наконец, изученные круговые функции применяются к определению расстояния Земля – Луна). Содействуя развитию у учащихся неоперативного конкретного мышления, полезно помнить о том, что постоянное обращение к наглядным представлениям может иногда оказаться вредным. Так, например, чрезмерное увлечение наглядностью преподавания начал стереометрии может затормозить формирование у учащихся пространственного воображения. Абстрактное мышление Абстрактное мышление тесно связано с мыслительной операцией, называемой абстрагированием. Напомним, что абстрагирование имеет двойственный характер: негативный (отвлекаются от некоторых сторон или свойств изучаемого объекта) и позитивный (выделяют определенные стороны или свойства этого же объекта, подлежащие изучению). Поэтому, абстрактным мышлениемназывают мышление, которое характеризуется умением мысленно отвлечься от конкретного содержания изучаемого объекта в пользу его общих свойств, подлежащих изучению. Абстрактное мышление может проявляться в процессе обучения математике: а) в явном виде. Например, рассматривая в курсе геометрии понятие геометрического тела, мы явно отвлекаемся от и всех свойств реальных тел, кроме формы, размеров и положения в пространстве; б) в неявном виде. Например, при счете предметов. конкретного множества мы неявно отвлекаемся от свойств каждого; отдельного предмета, полагая, что все предметы одинаковы (тождественны). Абстрактное мышление можно подразделить на: 1) аналитическое мышление; 2) логическое мышление; 3) пространственное мышление. 1. Аналитическое мышление характеризуется четкостью отдельных этапов в познании, полным осознанием, как его содержания, так и применяемых операций. Оно проявляется в процессе обучения через: а) аналитический способ доказательства теорем и решения задач (чтобы узнать, надо знать); б) решение задач методом уравнения; в) исследование результата решения некоторой задачи и т.п. В свою очередь, побуждая школьников к упомянутой выше математической деятельности, учитель может способствовать развитию у учащихся аналитического мышления. Аналитическое мышление не выступает изолированно от других видов абстрактного мышления; на отдельных этапах мышления оно может лишь превалировать над теми видами, с которыми оно выступает совместно. Этот вид мышления тесно связан с мыслительной операцией анализа. 2. Логическое мышление характеризуется обычно умением выводить следствия из данных предпосылок, умением вычленять частные случаи из некоторого общего положения, умением теоретически предсказывать конкретные результаты, обобщать полученные выводы и т. п. Известно, что развитие логического мышления школьников в процессе обучения математике является предметом особой заботы учителей и методистов. В процессе обучения математике логическое мышление проявляется (и развивается) у учащихся, прежде всего в ходе различных математических выводов: индуктивных (полная индукция) и дедуктивных, в ходе доказательств теорем, обоснований решения задачи т.п. 3. Пространственное мышление характеризуется умением мысленно конструировать пространственные образы или схематические конструкции изучаемых объектов и выполнять над ними операции, соответствующие тем, которые должны были быть выполнены над самими объектами. Известно, что невысокий уровень развития пространственного воображения и мышления, учащихся обычно является для них камнем преткновения при изучении стереометрии, так как оно не формируется сразу; для его успешного развития обычно требуется кропотливая предварительная подготовка учащихся. В определенной степени развитию пространственного мышления способствует использование в обучении таких технических средств обучения, как кинофильмы, диафильмы, диапозитивы, кодоскоп. Широкое применение наглядных пособий (в частности, анаглифов) при изучении стереометрии, конечно, в какой-то мере способствует развитию у учащихся пространственного мышления (и воображения). С этим типом мышления тесно связана способность учащихся выразить при помощи, какой – либо схемы тот или иной математический объект, операции или отношения между объектами. Схемы, которые при этом составляются, могут иметь самый разнообразный характер. Интуитивное мышление «Интуиция (лат. intuito – пристальное всматривание) – особый способ познания, характеризующийся непосредственным постижением истины... К области интуиции принято относить такие явления, как внезапно найденное решение задачи, долго не поддававшейся логическим усилиям, мгновенное нахождение единственно верного способа избежать опасности, быстрое и безотчетное отгадывание замыслов или мотивов поведения человека и т. д.» В современной педагогике специфику интуитивного мышления в его отличии от аналитического мышления пытался рассмотреть Дж. Брунер. «Можно более конкретно охарактеризовать аналитическое и интуитивное мышление. Аналитическое мышление характеризуется тем, что его отдельные этапы отчетливо выражены и думающий может рассказать о них другому человеку. Такое мышление обычно осуществляется с относительно полным осознанием как его содержания, так и составляющих его операций... В противоположность аналитическому, интуитивное мышление характеризуется тем, что в нем отсутствуют четко определенные этапы. Оно имеет тенденцию основываться, прежде всего, на свернутом восприятии всей проблемы сразу. Человек достигает ответа, который может быть правильным или ошибочным, не осознавая при этом (если вообще такое осознание имеет место) тот процесс, посредством которого он получил искомый ответ... Обычно интуитивное мышление основывается на знакомстве с основными знаниями в данной области и с их структурой, и это дает ему возможность осуществляться в виде скачков, быстрых переходов, с пропуском отдельных звеньев; эти особенности требуют проверки выводов аналитическими средствами – индуктивными или дедуктивными». В процессе традиционного школьного обучения математике иногда основное внимание уделяется точному воспроизведению школьником полученных им знаний. Поэтому нередко своеобразный ответ одаренного учащегося ценится меньше, чем хорошо заученный ответ другого. В первом случае, хотя учащийся не в состоянии четко изложить ход своих мыслей, он приходит к правильному результату, показывая хорошее умение применять свои знания, во втором – учащийся много и правильно говорит, но по существу не умеет пользоваться понятиями, выраженными в его речи. Часто преподавание математики строится именно так. Школьник учится не столько понимать математические отношения, сколько просто применять определенные схемы или правила без понимания их значения и связи. После такого неудачного начала обучения учащийся приходит к убеждению, что самое важное – быть «точным», хотя точность относится скорее к вычислениям, чем вообще к математике. Американский педагог-психолог Д. Брунер пишет, что «...Быть может, самым поразительным примером такого подхода является первоначальное изложение евклидовой геометрии учащимися средней школы в виде ряда аксиом и теорем без всякой опоры на непосредственный опыт оперирования простыми геометрическими формами. Если бы ребенок раньше овладел понятиями и доступными ему способами действий в виде «интуитивной» геометрии, то он смог бы более глубоко усвоить смысл теорем и аксиом, которые ему объясняются позднее». В настоящее время развитие интуитивного мышления привлекло внимание многих прогрессивных педагогов-математиков. На роль интуиции в обучении математики указывает А. Н. Колмогоров, Который пишет: «...Везде, где это возможно, математики стремятся сделать изучаемые ими проблемы геометрически наглядными. ...Геометрическое воображение, или, как говорят, «геометрическая интуиция», играет большую роль при исследовательской работе почти во всех разделах математики, даже самых отвлеченных. В школе обычно с особенным трудом дается наглядное представление пространственных фигур. Надо, например, быть уже очень хорошим математиком (по сравнению с обычным школьным уровнем), чтобы, закрыв глаза, без чертежа ясно представить себе, какой вид имеет пересечение поверхности куба с плоскостью, проходящей через центр куба и перпендикулярной одной из его диагоналей». Правда, значение интуиции нельзя переоценивать. Конечно, человек с хорошо развитой способностью к интуитивному мышлению обычно обладает определенными математическими способностями, но сама по себе интуиция не может обеспечить хорошего знания предмета. Д. Брунер высказывает мысль, что «может быть, прежде всего, нужно создать интуитивное понимание материала и только тогда знакомить учащихся с более традиционными и формальными методами дедукции и доказательства». То же самое отмечает и Э. Кастельнуово в книге «Дидактика математики». Говоря об обучении геометрии, она указывает, что надо сделать так, чтобы курсу «рациональной» геометрии предшествовал курс «интуитивной» геометрии. Этот курс должен быть построен таким образом, чтобы к 14 годам дети имели полное представление о мире геометрических фигур и вопросы, изученные в начале на интуитивной основе, были затем повторены с более абстрактной точки зрения, т. е. предлагается метод действия с объектом, а не метод наблюдения над ним. Автор ставит вопрос: «Если ясно, что надо начинать с изложения курса интуитивной геометрии, исходя из конкретного развития понятий и свойств, то какой смысл следует придавать опоре на конкретное? » И приводит пример, рассказывающий о различном подходе к конкретному: представим, что с детьми 11 лет мы изучаем квадрат. Чтобы дать определение этой фигуры, впрочем, уже известной всем детям этого возраста, исходя из конкретного, можно вырезать квадраты из листа бумаги и дать детям задание наблюдать за сторонами и диагоналями вырезанных квадратов. Можно привести примеры предметов, имеющих форму квадратов, сравнить квадраты с другими видами четырехугольников. Все это делается для того, чтоб ученик смог самостоятельно дать определение. Отправляясь от небольшого числа наблюдений неподвижных фигур, учащийся 11 лет, как правило, не способен сделать это самостоятельно. Автор предлагает другой, более естественный путь, используя не наблюдения над объектом, а действия с объектом. Детям дают равные между собой планки и винты для их скрепления. Скрепив планки, учащиеся замечают, что фигура, которую они получили, может изменятся, преобразовываться в ромб. Если сосредоточить внимание ребенка на элементах, которые не изменяются и которые изменяются при переходе от одной фигуры к другой, то он сможет интуитивно почувствовать постоянство суммы величин углов и изменение суммы длин диагоналей через рассмотрение предельных случаев, когда ромб «стремится» к отрезку. В этом случае наблюдение за большим числом фигур образующихся при преобразовании квадрата, приводит к характеристике и квадрата через ромб и, следовательно, к определению фигуры. Д. Брунер задает вопрос: «Является ли более вероятным развитие интуитивного мышления учащегося в тех случаях, когда преподаватель сам мыслит интуитивно?.. Кажется невероятным, чтобы учащийся мог развить у себя или имел доверие к интуитивному методу мышления, если он никогда не видел, как его эффективно используют взрослые. Учитель, который готов по догадке давать ответ на вопрос, заданный классом, и затем подвергнуть свою догадку критическому анализу, быть может, с большим успехом сформирует у своих учащихся умение пользоваться интуицией, чем тот учитель, который анализирует все свои впечатления заранее... ...Следует ли стимулировать учащихся к догадкам? Как создавать ситуации, требующие напряжения интеллектуальных процессов? Возможно, что имеются определенные условия, в которых догадки желательны и могут в некоторой степени способствовать нормированию интуитивного мышления. Такие догадки нужно заботливо развивать. Однако в школе выдвижение догадки часто тяжело наказывается и как-то ассоциируется с леностью учащихся. Конечно, никому бы не понравилось, если бы наши учащиеся не отмели совершать иных интеллектуальных операций, кроме догадок, как за догадками всегда должны следовать проверка и подтверждение в той мере, в какой это необходимо... Не лучше ли для учащихся строить догадки, чем лишаться дара речи, когда они не могут немедленно дать правильный ответ? » Поэтому в процессе обучения математике следует всячески поощрять у учащихся желание и способность к догадке. При этом следует каждый раз обращать внимание учащихся на то, что каждая гипотеза, выдвинутая при помощи догадки, нуждается в проверке направдоподобность и в обосновании (если она не будет опровергнуты каким-либо примером). Интуитивное мышление нередко проявляется в процессе умозаключений по аналогии. Так, например, пусть нам известно, что центр тяжести однородного треугольника совпадает с центром тяжести трех его вершин (т. е. трех материальных точек одинаковой массы, помещенных в трех вершинах треугольника). Зная это, мы можем предположить, что центр тяжести однородного тетраэдра совпадает с центром тяжести его четырех вершин. Такая догадка представляет собой «догадку по аналогии». Зная, что треугольник и тетраэдр похожи друг на друга во многих отношениях, мы и высказываем эту догадку. Предоставляем читателю самостоятельно проверить, насколько верна высказанная только что догадка. Функциональное мышление, характеризуемое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами (и умением это использовать), ярко проявляется в связи с изучением одной из ведущих идей школьного курса математики – идеи функции. Как известно, одним из центральных требований начальной стадии международного движения за реформу математического образования (возглавлявшегося Ф. Клейном) было требование обращать особое внимание на развитие у школьников функционального мышления, наиболее характерными чертами, которого являются: а) представление математических объектов в движении, изменении; б) операционно-действенный подход к математическим фактам, оперирование причинно-следственными связями; в) склонность к содержательным интерпретациям математических фактов, повышенное внимание к прикладным аспектам математики. Как показывают исследования, наглядно кинематические и физические представления, лежащие в основе функционального мышления, органически сливаются с формально-логическими компонентами мышления. Одним из средств развития функционального мышления могут служить системы задач на математическое выражение и исследование конкретных ситуаций с ярко выраженным «функциональным Содержанием». В общем случае решение такой задачи содержит в себе три момента: 1. В изучаемом явлении выделяют основные, существенные связи, отбрасывая второстепенные, несущественные детали, вводят различного рода упрощения и допущения. 2. Связав объекты, выступающие в изучаемом явлении, с числами или геометрическими образами, переходят от зависимостей между этими объектами к математическим соотношениям – формулам, таблицам, графикам. 3. Полученные математические соотношения исследуют, пользуясь уже известными, выработанными и изученными математическими правилами действий над ними, а результаты исследования истолковывают в терминах и понятиях изучаемого явления. К сожалению, на практике из-за недостатка времени нередко приходится ограничиваться неполными задачами, содержащими только некоторые из перечисленных выше элементов. Какими именно, зависит от возраста учащихся и преследуемых учителем целей. Нетрудно обнаружить, что разновидности математического мышления являются не чем иным, как специфическими формами - проявления диалектического мышления в процессе изучения математики. Можно, например, указать на тот факт, что так называемое функциональное мышление является адекватным осознанию изменчивости, взаимосвязи и взаимозависимости математических понятий и соотношений, что характерно для диалектического мышления. Известно также, что наряду с задачей развития логического мышления, составляющей одну из задач обучения математике, в школьном обучении должна решаться не менее важная, хотя и более общая задача – задача воспитания логической грамотности. Содержание понятия «логическая грамотность» доставляют такие логические знания и умения, которые дают возможность для успешного обучения в школе, для дальнейшего обучения и самообразования, для успешной общественно полезной практической деятельности и повседневной жизни. Исследования Л. Никольской показали, что от выпускников средней школы требуется овладение следующими логическими знаниями и умениями: умения определять известные понятия, классифицировать, понимать смысл основных логических связок, распознавать логическую форму математических предложений, доказывать утверждения и обнаруживать логические ошибки, организовывать свою деятельность в соответствии с внутренней логикой ситуации, мыслить критически, последовательно, четко и полно, владеть основными мыслительными приемами. Нетрудно обнаружить, что в понятие логической грамотности вкладываются не только соответствующие знания и умения, но и сформированность многих качеств научного мышления. Поэтому задача воспитания логической грамотности правомерно рассматривается как важный элемент общей культуры мышления. Развитие же логического мышления учащихся в процессе обучения математике есть, прежде всего, развитие теоретического мышления, которое представляет собой один из важнейших аспектов развития диалектического мышления. В самом деле, не только в ходе обучения и развития, но и в ходе воспитания, и в особенности в процессе формирования диалектико-материалистического мировоззрения школьников, предполагается целенаправленная работа учителя по развитию логического мышления, основанная на самом содержании учебного материала и его методологии. Конечным итогом обучения любому предмету (в том числе и математике) должно быть подведение учащихся к наиболее общим философским выводам о видах и формах существования материи. При этом важно, чтобы эти выводы и обобщения были сделаны самими учащимися в процессе размышления над логикой тех или иных посылок и следствий, в процессе изучения конкретного учебного предмета, под руководством учителя. Таким образом, с научной точки зрения говорить о вышеуказанных типах мышления как о компонентах, присущих только математическому мышлению, было бы неверно. Вместе с тем с дидактических позиций выделение этих компонентов математического мышления возможно и даже целесообразно, т. е. целенаправленная работа учителя по формированию у школьников функционального, логического, интуитивного и т. д. мышления реализует задачу математического развития учащихся в целом. Использование условной терминологии дает возможность ориентировать учителя на ту или иную сторону развития математического мышления у школьников в соответствующих методических рекомендациях. Так, обратимся еще раз, к примеру, упомянутому ранее. Говоря о необходимости развития у учащихся абстрактного мышления, можно рекомендовать учителю, приступающему к преподаванию систематического курса геометрии, начать с рассмотрения реальной ситуации – задачи проведения трубопровода между двумя пунктами. Сам трубопровод представляет собой реальный объект, обладающий самыми различными, важными в практическом смысле свойствами: весом отдельных звеньев, качеством металла, размерами, формой, протяженностью, качеством покрытия, пропускной способностью и т. д. Начиная проектировать строительство трубопровода, инженер-конструктор, прежде всего, будет интересоваться протяженностью и трассой, по которой он будет проложен. На этом уровне конструктор отвлекается от всех других свойств этого объекта, обращая внимание лишь на названные выше свойства; возникает абстрактная модель трубопровода в виде геометрической линии. Руководствуясь оптимальными условиями эффективной работы трубопровода, инженер начинает изучать вопрос о необходимой для этого форме и размерах трубопровода, не интересуясь теперь тем, по какой трассе он будет проложен. Возникает новая абстрактная модель этого же объекта, представленная в виде геометрического тела. Прораб, который руководит обкладкой трубопровода изоляционным материалом (или окраской трубопровода, защищающей его от коррозии), имеет дело уже с другой абстрактной моделью трубопровода: он рассматривает его как геометрическую поверхность. Решение этой и других аналогичных ей задач устанавливает полезность рассмотрения среди многообразных свойств объекта таких свойств, как размеры, форма и положение в пространстве. Возникает целая отрасль научного знания об объектах реальной действительности, в которой изучаются именно эти свойства реальных объектов, называемая геометрией. Таким образом, тезис В. И. Ленина о том, что «диалектика вещей создает диалектику идей...», имеет отношение, но только к анализу природы абстракции, но и к методам обучения математике. Говоря о том, что в процессе обучения математике необходимо развивать абстрактное мышление школьников, мы, в частности, имеем в виду широкое использование методических приемов, аналогичных вышеприведенному. В состав математического мышления включаются мыслит ильные умения, адекватные известным методам научного познания. В практике обучения математике отвыступают не столько как методы математической деятельности, сколько как комплекс средств, необходимых для усвоения учащимися математики и развития у них качеств, присущих математическому мышлению. Эти мыслительные умения могут проявиться (и формироваться) в обучении на уровнях эмпирического и научно-теоретического мышления. Наряду со спецификой математического мышления справедливо P3Дичать специфику физического, технического, гуманитарного и других видов мышления. Именно в силу этой специфики в процессе познания конкретных наук (и обучения конкретным учебным предметам) активизируется развитие того или иного компонента мышления вообще, усиливается роль того или иного приема мыслительной деятельности, того или иного метода познания. Формирование математического мышления школьников предполагает, таким образом, целенаправленное развитие на предмете математики всех качеств, присущих естественнонаучному мышлению, комплекса мыслительных умений, лежащих в основе методов научного познания, в органическом единстве с формами проявления мышления, обусловленными спецификой самой математики, с постоянным акцентом на развитие научно-теоретического мышления. |
Последнее изменение этой страницы: 2019-10-03; Просмотров: 227; Нарушение авторского права страницы