Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
О качествах научного (математического) мышления
Математическое мышление имеет свои специфические черты и особенности, которые обусловлены спецификой изучаемых при этом объектов, а также спецификой методов их изучения. Прежде всего, отметим, что математическое мышление часто характеризуют проявлением так называемых математических способностей. В психолого-дидактической и методической литературе в структуру математических способностей включаются многие качества мыслительной деятельности, именуемые либо как собственно математические способности (В. А. Крутецкий), либо как особенности мышления математика (А. Н. Колмогоров), ибо как качества ума (К. К. Платонов), либо как компоненты обучаемости (3. И. Калмыкова) и т.д. Существует общее мнение об активной работе в процессе математического мышления определенных качеств мышления (например, гибкость, пространственное воображение, умение выделять существенное и т. д.), которые в равной степени могут быть соотнесены как к математическому мышлению, так и к мышлению физическому, техническому и т. д., т. е. к научному мышлению вообще. Эти особенности мышления мы будем называть качествами научного мышления. Они представляют особую дидактическую значимость: формирование их у школьников способствует не только успешному обучению математике, но и успешному обучению другим предметам естественно-математического цикла. Последняя мысль подтверждается результатами исследований советского педагога Ю. К. Бабанского, показавшего, что успешность учения школьников тесно связана с сформированностыо y них таких качеств мышления, как самостоятельность мышления (коэффициент корреляции 0, 89), умение выделять существенное (0, 87), рациональность мышления (0, 85), гибкость мышления (0, 85), логичность речи (0, 85), критичность мышления (0, 84), зависимость успешности учения от уровня развития памяти и внимания оказалась меньшей. К числу таких качеств научного мышления относятся гибкость (нешаблонность), оригинальность, глубина, целенаправленность, рациональность, широта (обобщенность), активность, критичность, доказательность мышления, организованность памяти, четкость и лаконичность речи и записи. Все эти качества мышления сильно коррелируют друг с другом, часто выступают в органическом единстве. Поэтому ранжирование их по значимости весьма затруднительно, да и вряд ли целесообразное дидактической точки зрения. Важнее попытаться охарактеризовать их проявления практически. Будем считать характерным для проявления гибкости мышления умение целесообразно варьировать способы решения познавательной проблемы, легкость перехода от одного пути решения проблемы к другому; умение выходить за границы привычного способа действия, находить новые способы решения проблем при изменении задаваемых условий; умение перестраивать систему усвоенных знаний по мере овладения новыми знаниями и накопления опыта. Таким образом, гибкость мышления обнаруживается в быстроте ориентировки в новых условиях, в умении видеть новое в известном, выделять существенное, выступающее в скрытой форме. Интересно отметить, что А. Эйнштейн указывал на гибкость мышления как на характерную черту творчества. Антиподом гибкости мышления является косность мышления, чаще называемая шаблонностью мышления или психологической инерцией. Знания и опыт весьма часто воспроизводятся сознанием по определенным, привычным для данного индивидуума «проторенным путям». Возникает предрасположение к какому-либо конкретному методу или образу мышления, желание следовать известной системе правил в процессе решения задач, – шаблонность мышления. Шаблонность мышления является весьма серьезной помехой изобретательству и вообще творческой деятельности; нередкошаблонность мышления выступает как следствие обучения. И действительно, опыт показывает, что шаблонность мышления весьма характерна для многих школьников (как часто, например, школьники начинают решать незнакомую им задачу тем способом, который им «первым пришел в голову»). Именно на преодоление этогокачества мышления направлены известные эвристики типа: «Забудь о том, что знаешь», «Помни, что методов много, а не один», «Не иди по проторенному пути» и т. п. С шаблонностью мышления связан и эффект, называемый функциональной устойчивостью, согласно которому в большинстве случаев объекты, используемые в данной ситуации в обычных для них функциях, не используются в новом качестве. Этим, в частности, объясняются те трудности, которые связаны с переосмысливанием школьниками условия задачи, являющимся необходимой предпосылкой ее успешного решения. Вот один из характерных примеров. рис. 1 Параллельные прямые АВ и CD пересечены прямой EF, величина одного из внутренних углов при точке О (рис. 1 ) равна 130°. ОМ – биссектриса этого угла. Определить величину угла, образованного ею с прямой CD. Здесь прямая ОМ выступает одновременно и как биссектриса, и как секущая. Ее роль как биссектрисы угла создает функционального устойчивость, в силу которой учащиеся часто затрудняются в: использовании этой прямой в качестве секущей. Следует отметить, что шаблонность мышления, присущая многимшкольникам, имеет как негативный, так и позитивный характер. Она избавляет школьника от необходимости заново усваивать те или иные операции, решать задачи тех типов, которые неоднократно им встречаются, безусловно, положительно сказывается на результатах обучения. Однако шаблонность мышления мешает школьникам мыслить оригинально, отделять главное от второстепенного, отыскивать новые пути решения задач, применять известные им знания в новой ситуации. Понятно, что все это не способствует развитию творческих потенций школьника. Поэтому в обучении математике весьма важно помогать школьникам преодолевать этот «психологический барьер», развивать у них гибкость мышления. Высший уровень развития нешаблонного мышления проявляется в оригинальности мышления, которая в школьном обучении математике, как правило, выступает в необычности способов решения известных учащимся задач. Оригинальность мышления, чаще всего, проявляется как следствие глубины мышления. Глубина мышления характеризуется умением проникать в сущность каждого из изучаемых фактов, в их взаимосвязи с другими фактами; выявлять специфические, скрытые особенности в изучаемом материале (в условии задачи, способе ее решения, результате); умением конструировать модели конкретных ситуаций. Глубину мышления нередко называют умением выделять существенное. Известно, что познание регулируется по двум каналам отражения реальной действительности (объекта познания): по весьма узкому каналу отражения самого объекта и весьма широкому каналу отражения его фона (совокупности связанных с этим объектом различных свойств его самого и других, связанных с ним объектов); при этом второй канал часто функционирует бессознательно. Это вызвано тем, что знания и опыт откладываются в памяти (и воспроизводятся в ней) своеобразными комплексами понятий и представлений – «готовыми фрагментами ответов» на соответствующие вопросы. В процессе воспроизведения вспоминается не только то, что требуется вспомнить, но и многие бесполезные в данной ситуации положения, так или иначе связанные в сознании с основным объектом. Процесс отделения фона от самого объекта – сложный процесс. Величина фона в значительной степени зависит от тех условий, в которых происходит изучение объекта, равно как и от умений изучить этот объект в его существенных свойствах достаточно глубоко. Поэтому глубину мышления (умение выделять существенное) правомерно считают качеством, формирование которого у школьников является важнейшим условием успешности обучения математике. Таким образом, глубина мышления проявляется прежде всего в умении отделить главное от второстепенного, обнаружить логическую структуру рассуждения, отделить то, что строго доказано, от того, что принято «на веру», извлекать из математического текста главное из того, что в нем сказано (и не более того), и т.д. Антиподом глубины мышления является поверхность мышления. Именно этим можно объяснить обычное для учащихся затруднение, возникающее у них при ответе на следующий вопрос: «Является ли последовательность вида 2, 2, 2, … прогрессией, если является, то какой? » Усвоив поверхностно определение прогрессии, учащиеся не понимают, что ответ на этот вопрос целиком полностью зависит от того, оговорена ли в определении возможность равенства нулю разности (или единице знаменателя прогрессии). Целенаправленность мышления характеризуется стремлением осуществлять разумный выбор действий при решении какой-либо проблемы, постоянно ориентируясь на поставленную той проблемой цель, а также в стремлении отыскать наиболее кратчайшие пути ее достижения. Наличие у школьников этого качества мышления особенно важно при поиске плана решения математических задач, при изучении нового материала и т. д. Этому способствуют специально подобранные учителем задачи, вводящие в изучение новой темы, посредством которых перед учащимися раскрывается целесообразность ее изучения и последовательность рассмотрения относящихся к ней вопросов. Целенаправленность мышления дает возможность более экономичного решения многих задач, которые обычным способом решается если не сложно, то слишком долго. Целенаправленность мышления тесно связана с таким нравственным качеством личности, как любознательность, своеобразным антиподом которому является любопытство. В основе того и другого качества личности лежат условные рефлексы, в силу которых избирательная активность человека всегда имеет целенаправленный, намеренный характер. Первое из этих качеств (любознательность) обогащает знания и опыт человека именно в силу своей целенаправленности; любопытство, превращаясь в самоцель, гасит стремление человека к познанию, как только оно удовлетворено. Поэтому в обучении математике следует всячески поощрять любознательность учащихся и не поощрять любопытство. «Чтобы обучаться, нам нужно только понимать то (приспосабливаться к тому), чему нас учат. Но, чтобы с пользой применять знания, нужно уметь задавать вопросы типа: «Так ли это? », «Почему? » – и особенно самый мощный из них: «А что, если...? » Чело-пек, который постоянно задает такие вопросы, уже не просто учится». Антиподом целенаправленности является бесцельность мышления. Как уже отмечалось, целенаправленность мышления дает возможность более экономичного решения многих задач, которые обычным способом решаются если не сложно, то слишком долго. Тем самым целенаправленность мышления способствует проявлению такого качества, как рациональность мышления, характеризуемого склонностью к экономии времени и средств для решения поставленной проблемы, стремлением отыскать оптимально простое в данных условиях решение задачи, использовать в ходе решения схемы, символику и условные обозначения. Рациональность мышления часто проявляется при наличии широты мышления, которая характеризуется способностью к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применения к частным, нетипичным случаям; умение охватить проблему в целом, не упуская при этом имеющих значение деталей; обобщить проблему, расширить область приложения результатов, полученных в процессе ее разрешения. Поэтому широту мышления часто называют обобщенностью мышления. Это качество мышления проявляется в готовности школьников принять во внимание новые для них факты в процессе деятельности в известной (знакомой им) ситуации. Широта мышления учащихся проявляется также в умение классифицировать и систематизировать изучаемые математические факты, обобщать их, использовать обобщение и аналогию как методы решения задач. Антиподом широты мышления является узость мышления. Именно этим, например, объясняется распространенная ошибка учащихся, считающих единицу простым числом, и т. п. Все рассмотренные выше качества мышления могут проявиться лишь при условии проявления активности мышления, которая характеризуется постоянством усилий, направленных на решение некоторой проблемы, желанием обязательно решить поставленную проблему, изучить различные подходы к ее решению, исследовать различные варианты постановки этой проблемы в зависимости от изменяющихся условий и т.д. Активность мышления у учащихся проявляется также в желание рассмотреть различные способы решения одной и той же задачи, различные определения одного и того же математического понятия, обратиться к исследованию полученного результата и т.п. Качество мышления, которое является антиподом данному качествy, есть пассивность мышления. Отметим, что пассивность мышления является одной из основных причин слабого математического развития некоторых школьников и, в частности, формального усвоения содержания обучения математике. В числе качеств научного мышления важное место занимает критичность мышления, которая характеризуется умением оценить правильность выбранных путей решения поставленной проблемы, получаемые при этом результаты с точки зрения их достоверности, значимости. В процессе обучения математике это качество мышления у учащихся проявляется склонностью (и умением) к различного вида проверкам, грубым прикидкам найденного (искомого) результата, а также к проверке умозаключений, сделанных с помощью индукции, аналогии и интуиции. Критичность мышления школьников проявляется также в уме-ми найти и исправить собственную ошибку, проследить заново все выкладки или ход рассуждения, чтобы натолкнуться на противоречие, помогающее осознать причину ошибки. Отметим, что антипод данного качества мышления – некритичность еще свойственна многим учащимся средней школы. С критичностью мышления тесно связана доказательность мышления, характеризуемая умением терпеливо и скрупулезно относиться к собиранию фактов, достаточных для вынесения какого-либо суждения; стремлением к обоснованию каждого шага решения задачи, умением отличать результаты достоверные от правдоподобных; вскрывать подлинную причинность связи посылки и заключения. Наконец, к числу важных качеств научного мышления относится организованность памяти. Память каждого школьника является необходимым звеном в его познавательной деятельности, зависит от ее характера, целей, мотивов и конкретного содержания. Организованность памяти означает способность к запоминанию, долговременному сохранению, быстрому и правильному воспроизведению основной учебной информации и упорядоченного опыта. Понятно, что в обучении математике следует развивать у школьников как оперативную, так и долговременную память, обучать их запоминанию наиболее существенного, общих методов и приемов решения задач, доказательства теорем; формировать умения систематизировать свои знания и опыт. Антиподом этого качества мышления является неорганизованность памяти, в силу которой происходит как запоминание несущественной учебной информации, так и забывание основной. Правда, при забывании мелких и незначительных фактов становится возможным запоминать достаточно большую по объему и богатую по содержанию информацию. Организованность памяти дает возможность соблюдать принцип экономии в мышлении. Поэтому нецелесообразно загружать память учащихся ненужной или незначительной информацией, не накапливать у них опыт учебной деятельности, бесполезной для дальнейшего. Так, например, до недавнего времени школьники «разучивали» решения типовых текстовых задач, не имеющих большого познавательного значения; это весьма отрицательно сказывалось и на развитии их памяти. Опыт показывает, что организованность памяти формируется у школьников особенно эффективно, если запоминание каких-либо фактов основано на понимании этих фактов. Поэтому зубрежка школьниками многочисленных правил является не только непродуктивной деятельностью, но и попросту вредной. В процессе обучения математике развитию и укреплению памяти школьников способствуют: а) мотивация изучения; б) составление плана учебного материала, подлежащего запоминанию; в) широкое использование в процессе запоминания сравнения, аналогии, классификации и т. п. Такие качества научного мышления, как ясность, точность, лаконичность речи и записи, не нуждаются в особых комментариях. |
Последнее изменение этой страницы: 2019-10-03; Просмотров: 206; Нарушение авторского права страницы