Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Систематизация и критическая оценка опубликованных отечественных и зарубежных работ по теплообменным аппаратам



Реферат

 

Пояснительная записка проекта содержит 115 листов текста, 8 рисунков, 23 таблицы, 27 наименований источников литературы.

Дипломный проект посвящен конструкторской разработке кожухотрубчатого теплообменного аппарата, взамен существующего в настоящее время конденсатора хлора.

Разработаны рабочие чертежи на изготовление теплообменного аппарата. Произведен механический расчет основных узлов теплообменного аппарата.

Рассмотрены вопросы контроля и автоматизации технологического процесса, мероприятия по безопасности эксплуатации оборудования, проведено экономическое обоснование реконструкции.

Результаты работы могут быть использованы для практического применения на производстве.


Содержание

 

Задание

Реферат

Введение

1 Литературный обзор

1.1 Систематизация и критическая оценка опубликованных     

отечественных и зарубежных работ по теплообменным аппаратам

1.2 Развитие процесса получения жидкого хлора, его варианты

1.3 Анализ и критическая оценка работы оборудования

отделения жидкого хлора цеха N 2 ЗАО " Каустик"

1.4 Усовершенствование оборудования отделения

жидкого хлора цеха N 2 ЗАО " Каустик"

1.5 Патентные проработки конструкций змеевиковых испарителей

2 Обоснование выбора темы проекта

3 Технологическая часть

3.1 Описание реконструируемой схемы отделения

конденсации и ее аппаратурное оформление

3.2 Подготовка исходных данных для технологических расчетов

3.3 Расчет тепловой нагрузки конденсатора

3.4 Расчет гидравлического сопротивления

кожухотрубчатого теплообменника

4 Механическая часть

4.1 Выбор конструкционных материалов для проведения реконструкции

4.1.1 Таблицы химического состава и механических

свойств конструкционных материалов

4.2 Расчет на прочность элементов конденсатора

4.2.1 Расчет на прочность цилиндрической обечайк

4.2.2 Расчет фланцевых соединений      

4.2.3 Расчет трубной решетки      

4.3 Основные указания по ремонту и монтажу оборудования

отделения конденсации

4.4 Методы восстановления трубок и трубных решеток

5 Автоматизация и управление техническими системами

5.1 Автоматический контроль      

5.1.1 Выбор и обоснование параметров контроля

5.1.2 Выбор и обоснование средств контроля

5.2 Автоматическое регулирование      

5.2.1 Выбор и обоснование параметров, управляющих

воздействий и схем65

5.2.2 Выбор и обоснование средств регулирования

5.3 Сигнализация и блокировка.

5.3.1 Выбор и обоснование параметров предупредительной и

аварийной сигнализации

5.3.2 Выбор и обоснование средств предупредительной сигнализации

5.4 Сводная спецификация средств автоматизации

6 Безопасность и экологичность проекта

Введение

6.1 Безопасность проекта

6.1.1 Общая характеристика опасностей проекта

6.1.2 Безопасность производственной деятельности

и мероприятия по ее обеспечению

6.2 Санитарно-технические мероприятия       

6.2.1 Освещение

6.2.2 Вентиляция

6.2.3 Отопление

6.2.4 Бытовые помещения

6.2.5 Льготы для работающих     

6.3 Экологичность проекта

6.3.1 Характеристика источников экологической опасности    

6.3.2 Выбросы, их состав, количество и влияние на окружающую среду  

6.3.3 Водоснабжение производства и канализация, нормы расхода воды 

6.4 Безопасность и экологичность проекта в чрезвычайных ситуациях

7 Экономическая част

7.1 Расчет производственной программы      

7.2 Расчет капитальных вложений

7.3 Расчет показателей по труду и заработной плате

7.3.1 Расчет годового фонда заработной платы

7.3.2 Расчет годового фонда заработной платы для ИТР

7.3.3 Расчет расходов на содержание и эксплуатацию     

оборудования и цеховых расходов

7.4 Расчет себестоимости продукции

7.5 Обоснование экономической эффективности

проектного решения

8 Заключение

Список использованных источников

Ведомости спецификаций

 


Введение

 

В настоящее время, как и раньше, нефтехимии и химии неорганических соединений придается большое значение. Химическая продукция широко используется в народном хозяйстве. В связи с ограниченностью природных ресурсов и ухудшением экологии повышаются требования, предъявляемые к химической продукции.

Для выполнения этих требований производится интенсификация производства, уменьшаются затраты на производство, улучшаются свойства продукции и уменьшаются их вредные свойства.

Для получения высококачественной продукции внедряются новые разработки, используются научные и технические новшества, производится реконструкция оборудования.

В перспективы развития производства закладываются следующие требования: мало- и безотходное производство, уменьшение затрат, получение новых соединений и т.д.

Цех N 2 ЗАО " Каустик" выпускает хлор жидкий, абгазы конденсации хлора.

Хлор жидкий выпускается в соответствии с ГОСТ 6718 высшего и первого сортов.

Жидкий хлор - химическая формула “С12”, жидкость янтарного цвета с резким удушающим запахом. Чистый газообразный хлор при давлении 0, 1 МПа и температуре минус 34, 05 °С сжижается.

Жидкий хлор анализируют, пропуская пробу паров хлора через поглотитель с раствором восстановителя, в приборе, снабженном бюреткой для собирания непоглощенных примесей “нехлора”.

По привесу поглотителя и объему “нехлора” рассчитывают вес. %С12. Нехлор далее анализируют на содержание СО2, О2, Н2.

Абгазы конденсации хлора по своему составу должны отвечать следующим требованиям:

Содержание хлора, %                        не менее 65;

Содержание водорода, I                    не более 4;

Содержание инертных газов                       остальное.

Абгазный хлор используется внутри объединения в смеси с электролитическим.

В таблице 1 приведена характеристика сырья, материалов и полупродуктов.

Хлор находит широкое применение в различных отраслях народного хозяйства. Хлор применяется в производстве ядохимикатов - ДДТ, гексахлорана, хлорофоса, металлилхлорида и других веществ, применяемых для борьбы с вредителями сельского хозяйства - уничтожении сорняков.

Хлор применяется в производстве цветных и редких металлов, цинка, титана, в производстве сильных растворителей, красителей, синтетических моющих средств, лекарственных средств.

Кроме того, хлор употребляется в текстильной промышленности для отбеливания тканей, в бумажной промышленности для отбеливания целлюлозы и бумаги. Применяется хлор для хлорирования воды.

 


Таблица 1 - Характеристика сырья, материалов и полуфабрикатов.

Наименование ГОСТ или ТУ Показатели, обязательные для проверки перед использованием в производстве Показатели пожаровзрыво-безопасности и токсичности Примечания
Хлоргаз электро-лити-ческий По регламен-ту цеха диафраг-менного электро-лиза С12 - 94-96% Объемных Н2 - не более 0, 5% Влага - не более 0, 011%вес (0, 3 г/куб.м) Аэрозоли - не более 10 мг/куб.м Смеси хлора и водорода, содержащие от 5, 8 до 88, 5% водорода в хлоре, являются взрывоопасными, ПДК хлора - 1мг / куб м. Класс опасности – 2  
Азот ГОСТ 9293 РИЗГ - 1, 2 МПа Непожароопасен, невзрывоопасен. На организм человека действует удушающе. Влага не более 0, 01%
Раствор хлорис-того кальция По регламен-ту цеха по производ-ству хлора Температура минус 28°С Пожаро и взрывоопасен  

 


Литературный обзор

ЗАДАНИЕ

На проведение патентных исследований

Наименование темы поиска:      Реконструкция отделения

конденсации жидкого хлора ЗАО " Каустик"

Задача патентных исследований:    Поиск конструкции теплообменного аппарата

 

Краткое содержание работы Срок исполнения Отчетный документ
Разработка конструкции теплообменного аппарата с 15.03.2001 по 20.05.2001 Справка о поиске

 

Руководитель дипломного проекта:                                    А.Т. Гильмутдинов

 

Студент группы МЗ-96-31                                             М.Н. Исхаков

 

Эксперт (информатор) патентного отдела                              Р.В. Ильясова


Обоснование выбора темы дипломного проекта

 

На основании произведенного анализа работы оборудования отделения конденсации хлора цеха N 2 ЗАО " Каустик" и вынесенной ему оценки, было решено дать задание на проектирование реконструкции отделения в настоящем дипломном проекте.

Было предложено произвести проектирование на замену существующего в настоящее время конденсатора хлора на новый теплообменный аппарат - кожухотрубчатый.

 


Технологическая часть

3.1 Описание реконструируемой части схемы отделения конденсации и ее аппаратное оформление

 

Технологический процесс получения жидкого хлора состоит из следующих стадий:

а) сжижение осушенного хлора в конденсаторах;

б) хранение жидкого хлора;

в) испарение жидкого хлора;

г) налив жидкого хлора в железнодорожные цистерны.

Сжижение осушенного хлора в конденсаторах производится следующим образом: сжатый до 0, 3 МПа осушенный хлоргаз из цеха диафрагменного электролиза подается на сжижение в конденсатор поз. 2. Хлоргаз поступает в трубное пространство конденсаторов, а в межтрубное пространство подается рассол-раствор хлористого кальция с температурой минус 28 °С и давлением 0, 4 МПа из аммиачно-холодильного цеха. Сконденсировавшийся в трубном пространстве жидкий хлор с абгазами, образовавшимися от неполного сжижения хлора, поступает в абгазоотделитель поз. 3, в котором жидкий хлор отделяется от абгазов конденсации.

Абгазы конденсации, содержащие не менее 65% хлора, подаются из верхней части абгазоотделителя потребителям, а жидкий хлор самотеком сливается в танки поз. 8.

Сжижение ведется таким образом, чтобы содержание водорода в абгазах не превышало 4% объемных. Регулирование содержания водорода в абгазах производится изменением расхода рассола на конденсаторы, т.е. изменением температуры сжижения, а также изменением давления в системе.

Далее жидкий хлор поступает на хранение. Жидкий хлор самотеком сливается в танк из абгазоотделителей. Давление в танке должно быть от 0, 03 до 0, 05 МПа ниже, чем в абгазоотделителях.

Избыточное давление, создаваемое в танках поступающим жидким хлором, беспрерывно стравливается в линию абгазов конденсации и далее потребителю. Для подготовки танков к ремонту предусмотрено стравливание избыточного давления в линию абгазов и далее на очистку от хлора в отделение корпуса 107 на абсорбцию.

Для обеспечения необходимого запаса хранения жидкого хлора в отделении установлено 5 танков поз.8 емкостью по 125 куб.м. каждый.

Один из пяти танков является резервным и не подлежит заполнению.

Из танков жидкий хлор передавливается с помощью сухого азота давлением 1, 2 МПа на испарительную станцию и на налив в железнодорожные хлорные цистерны. Контроль за поступлением жидкого хлора в танк осуществляется по прибору КИП. Наполнение танка жидким хлором производится по 1, 25 кг жидкого хлора на 1 литр сосуда и составляет 156 т.

Часть полученного жидкого хлора отправляется на испарение. Узел испарения предназначен для испарения хлора и подачи его внутризаводским потребителям.

Жидкий хлор из танков давлением азота до 1, 2 МПа подается в испаритель поз.4. Испаритель представляет собой вертикальный цилиндрический аппарат, заполненный водой. Внутри аппарата размещен змеевик, по которому проходит и испаряется жидкий хлор.

Температура воды в испарителях поддерживается автоматически в пределах не более плюс 70 °С поступающим острым паром. Выходящий из змеевика испаренный хлоргаз с температурой не более плюс 65 °С под давлением 0, 4 МПа поступает потребителю.

После завершения всех стадий переработки хлора жидкий хлор поступает на налив в желез, нодорожные цистерны. Налив в железнодорожные цистерны должен вестись в соответствии с действующей инструкцией по безопасной эксплуатации цистерн, контейнеров (бочек) и баллонов для жидкого хлора.

Готовая цистерна для наполнения жидким хлором устанавливается на весы. Башмаки устанавливаются на рельсы с обеих сторон весов в упор к колесам цистерны. Все вентили на верхнем люке цистерны должны быть закрыты. Со стороны железнодорожного пути должны быть поставлены сигналы размером 400x500 мм с надписью " Стой, проезд запрещен, производится налив цистерны".

Стрелку железнодорожного пути запереть на замок.

Цистерну наполняют через сифонный вентиль. Масса нетто заполненной цистерны 46700 кг (при емкости котла 38, 1 куб.м.). При наполнении цистерны сброс абгазов производится через один из двух абгазных вентилей, к которому присоединен абгазный трубопровод. Во время налива давление в цистерне не должно превышать 0, 7 МПа по манометру на цистерне. После налива цистерны необходимо произвести проверку герметичности запорных вентилей, предохранительного клапана и всех фланцевых соединений. Проверка производится аммиаком. При обнаружении пропусков они должны быть ликвидированы. Только после этого можно продолжать налив цистерны. При обнаружении неисправности в заполненной цистерне жидкий хлор необходимо передавить обратно в танк сухим азотом давлением 0, 12 МПа.

После окончания наполнения цистерны абгазную и наливную линии продуть сжатым азотом со сбросом на очистку абгазов. Все вентили на цистерне и на линиях закрыть, отсоединить абгазную и сливную линии. На вентили цистерны и на линиях ставятся заглушки.

Обслуживающий цистерну персонал должен иметь при себе противогазы и надевать их при наличии или возможном выделении газа. При наполнении цистерны при отсоединении линий, при установке заглушек на вентилях цистерны и на трубопроводах хлора работу необходимо вести в противогазах и в рукавицах. Ответственным лицом за соблюдение всех правил при наполнении цистерны является старший аппаратчик отделения.

Подготовка исходных данных для технологических расчетов

 

Для проведения технологического расчета теплообменного аппарата в отделении жидкого хлора ЗАО " Каустик" необходимо определить параметры исходного сырья и получаемых продуктов переработки.

В качестве горячего теплоносителя используется хлоргаз, поступающий в трубное пространство конденсатора.

В качестве холодного теплоносителя применяется раствор хлористого кальция.

Из отделения диафрагменного электролиза электролитический хлоргаз поступает в отделение конденсации жидкого хлора со следующими режимными параметрами:

а) температура, °С                                                                   30

б) давление, МПа                                                                     0, 21

в) количество хлоргаза поступающего в конденсатор, м3/ч           3340

В данном состоянии хлор имеет плотность:

r =4, 11 кг/м3

На выходе из конденсатора жидкий хлор имеет температуру минус 26, 7 °С.

Коэффициент сжижения, %                                                      79

Рассол, поступая в конденсатор, имеет температуру минус 30 °С и нагревается до температуры минус 27 °С.

Рассол подается под давлением, МПа                                    0, 3

 

Механическая часть

Расчет фланцевых соединений

Фланец приняли типа " шип-паз".

Расчетную температуру фланцев tф, °C, приняли согласно [17, С.92]:

tф = t,                                                              (4.8)

где t - температура рассола в конденсаторе, С.

Температуру рассола в конденсаторе t, °C, приняли согласно технологическим данным по производству жидкого хлора:

t = минус 28, 5 °С

Расчетная температура фланцев tф, °С:

tф = минус 28, 5 °С

Расчетную температуру болтов и обечайки tб, °C, определяли согласно [17, С.92]:

tб = 0, 97 × t,                                                    (4.9)

где t - температура рассола в конденсаторе, °С.

Расчетная температура болтов и обечайки tб, °C:

tб = 0, 97 × ( минус 28, 5) = минус 27, 85 °С

Допускаемое напряжение для стальных болтов (шпилек) [s]б, МПа приняли согласно [17, С.93]:

[s]б = 130 МПа

Толщину втулки фланца S, м определили для приварного встык согласно [17, С.93]:

S < Sф < 1, 3 × S                                    (4.10)

где S - исполнительная толщина стенки обечайки, м;

Sф - толщина втулки фланца, м.

Исполнительную толщину стенки обечайки S, м приняли согласно ГОСТ 380:

S = 0, 005 м

Для нахождения толщины втулки фланца определили условия уравнения (4.10) настоящего расчета:

S = 0, 005 м

1, 3 × S = 0, 0065 м

Толщину втулки фланца Sф, м приняли:

Sф = 0, 006 м

Исполнительную толщину стенки обечайки и основания втулки приварного встык фланца S1, м определили согласно [17, С.93]:

S1 = b1 × Sф                                           (4.11)

где b1 - коэффициент;

Sф - толщина втулки фланца, м.

Коэффициент b1, определяемый согласно [17, С.95], приняли:

b1 = 1, 8

Исполнительная толщина стенки обечайки и основания втулки приварного встык фланца составит:

S1 = 1, 8 × 0, 006 = 0, 0108 м

Высоту втулки фланца для приварного встык фланца hв, м, определили согласно [17, С.94]:

hв > (1/i) × (S1 - S ),                                         (4.12)

где i - уклон втулки;

S1 - исполнительная толщина стенки обечайки у основания втулки, м;

S0 - толщина втулки фланца, м.

Уклон втулки i приняли согласно [17, С.94]:

i = 0, 33

Высота втулки фланца для приварного встык фланца составит:

hв > (1/0, 33) × (0, 0108 - 0, 006) = 0, 0144 м

Приняли высоту втулки фланца;

hв = 0, 015 м

Диаметр болтовой окружности фланца Dб, м, определили согласно [17, С.95]:

Dб > D + 2 × (S1 + dб + u)                              (4.13)

где D - внутренний диаметр конденсатора, м;

S1 - исполнительная толщина стенки обечайки у основания втулки, м;

dб - наружный диаметр болта, м;

и - нормативный зазор между гайкой и втулкой, м.

Внутренний диаметр фланца D, м приняли:

D = 0, 3 м

Наружный диаметр болта dб, м выбрали согласно[17, С.94]:

dб = 0, 02 м

Нормативный зазор между гайкой и втулкой u, м определили согласно [17, С.95]:

U = 0, 005 м

Диаметр болтовой окружности фланца составит:

Dб > 0, 8 + 2 × (0, 0108 + 0, 02 + 0, 005) = 0, 37 м

Принимаем диаметр болтовой окружности фланца Dб, м:

Dб = 0, 4 м

Наружный диаметр фланцев Dh, м принимаем согласно [17, С.95];

Dh > Dб + а                                          (4.14)

где Dб - диаметр болтовой окружности фланца, м;

а - конструктивная добавка для размещения гаек по диаметру, м.

Конструктивную добавку для размещения гаек по диаметру а, м, определили согласно [17, С.95]:

а = 0, 04 м

Наружный диаметр фланцев Dh, м:

Dн > 0, 4 + 0, 04 = 0, 44 м

Приняли наружный диаметр фланцев Dh, м:

Dh = 0, 45 м

Наружный диаметр прокладки Dн.п., м, для приварных встык фланцев определили согласно [17, С.96]:

Dн.п. = Dб – е                                        (4.15)

где Dб - диаметр болтовой окружности фланца, м;

е - нормативный параметр, м.

Нормативный параметр для плоских прокладок е, м, определили согласно [17, С.95]:

е = 0, 03 м

Наружный диаметр прокладки Вн.п., м, для приварных встык фланцев составит:

Dн.п. = 0, 4 - 0, 03 = 0, 37 м

Для аппарата диаметром менее 1, 0 м выбрали плоские неметаллические прокладки.

Средний диаметр прокладки Dc.п., м, определили согласно [17, С.95]:

Dс.п. = Dн.п. – b                                      (4.16)

где Dн.п. - наружный диаметр прокладки, м;

b - ширина прокладки, м.

Ширину прокладки b, м принимали согласно [17, С.96]:

b = 0, 015 м

Средний диаметр прокладки составит:

Dс.п. = 0, 37 - 0, 015 = 0, 355 м

Количество болтов nб, шт, необходимое для обеспечения герметичности соединения определили согласно [17, С.96]:

nб > 3, 14 × Dб / tш                                                   (4.17)

где Dб - диаметр болтовой окружности;

tш - рекомендуемый шаг расположения болтов.

Рекомендуемый шаг расположения болтов tш, м выбрали в зависимости от давления согласно [17, С.97]:

tш = (4, 2 - 5) × dб                                            (4.18)

где dб - наружный диаметр болта, м.

Наружный диаметр болта tб, м, выбрали согласно

tб = 0, 02 м

Рекомендуемый шаг расположения болтов составит:

tш = (4, 2 - 5) × 0, 02 = 0, 84 - 0, 1 м

Принимаем шаг расположения болтов:

tш = 0, 1 м

Количество болтов nб, штук, необходимое для обеспечения герметичности:

nб > 3, 14 × 0, 4/0, 1 = 12, 56 штук

Количество болтов приняли 16 штук.

Ориентировочную высоту фланца hф, м, определили согласно [17, С.96]:

hф > lф × D × Sэк                                             (4.19)

где lф - коэффициент;

D - внутренний диаметр конденсатора, м;

Зэк - эквивалентная толщина втулки, м.

Коэффициент lф приняли согласно [17, С.97]:

lф = 0, 41

Внутренний диаметр конденсатора D, м, определили согласно ГОСТ 15120:

D = 0, 8 м

Эквивалентную толщину втулки Sэк, м, определили согласно [17, С.96]:

 

                      (4.20)

 

где SФ - толщина втулки фланца, м;

hB - высота втулки фланца приварного встык, м;

b1 - коэффициент;

D - внутренний диаметр конденсатора, м.

Эквивалентная толщина втулки Sэк, м:

 

Высота фланца nф, м:

hф > 0, 41 × 0, 8 × 0, 007 = 0, 03 м

 

4.2.3 Расчет трубной решетки

Толщину трубной решетки Sтр, м, с условием, что она подвергается усилиям со стороны трубного пучка, определили согласно [2, с, 64]:

 

                         (4.21)

где К - коэффициент;

К0 - коэффициент;

Dпр - диаметр прокладки, м;

Рр - рабочее давление в аппарате, МПа;

ф - коэффициент прочности сварного шва;

[s] - допускаемое рабочее напряжение, МПа;

Ри - давление изгибающее, МПа;

[s]и - допускаемое напряжение при гидроиспытании, МПа.

Коэффициент К принимали согласно [2, С.65]:

К = 0, 41

Коэффициент К0 принимали согласно [2, С.65]:

К0 =1, 44

Диаметр прокладки Dпр, м, выбрали конструктивно:

Dпр = 0, 75 м

Рабочее давление в аппарате Рр, МПа, приняли согласно технологическим условиям отделения жидкого хлора:

Рр = 0, 3 МПа

Коэффициент прочности сварного шва ф, принимали согласно [17, С.10]:

ф = 1, 0

Давление изгибающее Ри, МПа, определили согласно [2, С.65]:

 

                                   (4.22)

 

где sт - предел текучести металла, МПа;

[s] -допускаемое рабочее напряжение, МПа.

Предел текучести sт, МПа, определили согласно [17, С.282]:

sт = 280 МПа

Допускаемое рабочее напряжение составит:

[s]= 1, 0 × 170 = 170 МПа

Давление изгибающее составило:

 

 

Допускаемое напряжение при гидроиспытании определили согласно уравнению (4.9) настоящего расчета:

[s]и = 254, 55 МПа

Толщина трубной решетки Sтр, м

 

Исполнительную толщину трубной решетки Sтр, м, определили с учетом добавки на коррозию:

Sтр = S’тр + С                                                 (4.23)

где С - прибавка на коррозию, м.

Прибавку на коррозию С, м, принимаем:

С = 0, 001 м

Исполнительная толщина трубной решетки Sтр, м, составит;

Sтр = 0, 0343 + 0, 001 = 0, 0353 м

Приняли исполнительную толщину трубной решетки:

Sтр = 0, 036 м

Допускаемое рабочее давление [Р]р, МПа, определили согласно [2, С.67]:

[Р]р = [Р] × (Sтр - С) / [(К × К0 × Dпр) × fi                    (4.24)

где [Р] - допускаемое рабочее давление в аппарате, МПа;

Sтр - толщина трубной решетки, м;

С - прибавка на коррозию, м;

Ко - коэффициент;

ф - коэффициент сварного шва.

Диаметр прокладки Dпр, м, определили конструктивно:

Dпр = 0, 75 м

Допускаемое рабочее напряжение трубной решетки составит:

[Р] = (0, 036 - 0, 001) × 170 / [(0, 41 × 1, 44 × 0, 75) × 1, 0] = 30, 6 МПа

Условие прочности трубной решетки:

Рр < [Р]тр                                                                                (4.25)

0, 3 < 30, 6 МПа

выполняется.

Автоматический контроль

 

Автоматический контроль служит для непрерывного наблюдения за ходом технологического процесса в соответствии с требованиями технических норм и регламента.

Условия работы в отделении конденсации хлора относятся к вредным. Технологические процессы идут в герметически закрытых аппаратах. Поэтому контроль технологического процесса осуществляется с помощью контрольно-измерительных приборов, что дает возможность работающему персоналу меньше находиться во вредной среде. С помощью контрольно-измерительных приборов осуществляется контроль за температурным режимом технологического процесса, за давлением, расходом и другими параметрами.

Введение

 

Забота о создании здоровых и безопасных условий труда всегда находилась и находится в центре внимания правительства, профсоюзов. На протяжении более полувека на решение теоретических и практических задач, связанных с этой проблемой, были направлены многочисленные технические, экономические, организационные и правовые мероприятия.

На первых этапах развития отечественной химической промышленности мероприятия по технике безопасности сводились к защите работающих от опасностей и вредностей производства путем применения предохранительных устройств, ограждений, вентиляции, индивидуальных защитных приспособлений. Теперь основным направлением становится создание процессов и оборудования, уменьшающих или вовсе исключающих возникновение опасностей и вредностей. Такое направление работы по оздоровлению условий труда позволяет, особенно на новостроящихся и реконструируемых предприятиях химической промышленности, создавать нормальную санитарно-гигиеническую обстановку.

Улучшение условий труда - самостоятельная и важная задача социальной политики, осуществляемой государством, оно должно заботиться об улучшении условий и охраны труда, его научной организации, о сокращении, а в дальнейшем и полном вытеснении тяжелого физического труда на основе комплексной механизации и автоматизации производственных процессов во всех отраслях народного хозяйства.

В процессе сжижения осушенного хлора в конденсаторах происходит сжижение сжатого до 0, 3 МПа осушенного хлоргаза из цеха диафрагменного электролиза. Хлоргаз поступает в трубное пространство конденсаторов, а в межтрубное пространство подается рассол - раствор хлористого кальция с температурой минус 28 °С и давлением 0, 4 МПа из аммиачно-холодильного цеха. Сконденсировавшийся в трубном пространстве жидкий хлор с абгазами образовавшимися от неполного сжижения хлора, поступает в абгазоотделитель, в котором жидкий хлор отделяется от абгазов конденсации. При этом в насосах используются двойные торцевые уплотнения, что повышает их герметичность по сравнению с использованными ранее насосами.

Проблема охраны окружающей среды является одной из главных проблем. Основные направления решения этой проблемы закреплены в Конституции, ряде законов Российской Федерации, Республики Башкортостан, специальных постановлениях.

Главным направлением охраны природы от промышленных выбросов является создание безотходных и малоотходных технологий, а в них существенную роль играет оборудование.

Безопасность проекта

Освещение

Для освещения производственных помещений применяются две системы искусственного освещения:

1) общее освещение, при котором осветительные приборы расположены под потолком помещения и освещают как рабочие поверхности, так и все помещение в целом;

2) комбинированное освещение, при котором помимо общего применяется также местное освещение.

Местным называется такое освещение, при котором осветительные приборы расположены непосредственно у рабочих мест и служат только для освещения рабочих поверхностей. Местное освещение должно обеспечить нормальную освещенность рабочих поверхностей и площадок помещения. Для основных производственных и вспомогательных помещений нефтехимических заводов установлены следующие нормы достаточной освещенности в люксах (лк):

помещения щитов КИП 75,

 административные помещения 50

 мастерские    50-75

уборные, умывальные, душевые 15

Аварийное освещение устанавливается с целью создания минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения. Оно составляет не менее 5% от основного освещения, но не менее 2 лк. Выбираем подвесной светильник повышенной надежности типа НОГЛ-80 с люминесцентной лампой мощностью 80 Вт. Для эксплуатации принимаем светильник группы «Универсал» типа СПБ.

Вентиляция

Для обеспечения нормальных санитарно-гигиенических условий труда ввиду повышенной температуры в производственном помещении, на установке предусмотрена система общеобменной приточно-вытяжной вентиляции, позволяющей удалять при помощи одной установки загрязненный и перегретый воздух из всего объема помещения; чистый воздух для замещения удаленного подается при помощи другой установки. Отношение количества подаваемого воздуха к количеству удаляемого называется вентиляционным воздушным балансом. При равенстве притока и вытяжки баланс называется уравновешенным, при превышении притока над вытяжкой - положительным, в противном случае - отрицательным. Если баланс неуравновешен, то излишнее или недостающее количество воздуха выходит из помещения или поступает в него через неплотности в наружных заграждениях. Эта часть притока или вытяжки называется неорганизованной, так как места, через которые проникает воздух, и его объем нельзя точно определить. Объем подаваемого в помещение свежего воздуха, необходимого для удаления избыточного тепла и поддержания в помещении температуры, установленной санитарными нормами, определяется согласно СНиП 11-33.

Для вентиляции принимаем два двухсторонних центробежных вентилятора ЦУ 94/2, с довольно высоким критерием быстроходности - 94, т.е. вентилятор может обеспечить относительно высокую производительность 18000 м3/ч. Кратность воздухообмена общеобменной вентиляции равна 50 [14, С.101].

Аварийная вентиляция служит вытяжкой, чтобы создать в помещении некоторое разряжение и тем самым предотвратить распространение газовых смесей в соседние помещения. Кратность воздухообмена аварийной вентиляции равна 30 [14, С.101].

Для аварийной вентиляции выбрали четыре вентилятора типа Ц-4 производительностью 3000 м3/ч [14, С.110].

Отопление

В производственных помещениях, в которых постоянно или длительное время находится обслуживаемый персонал, предусматривают систему отопления. В помещениях, где температура обычно поддерживается технологическим оборудованием, должно иметься резервное отопительное устройство, позволяющее поддерживать температуру не ниже при ремонте оборудования.

Система отопления состоит из трех элементов:

1) генератора для получения тепловой энергии;

2) теплопроводов для транспортировки теплоносителя к отапливаемому помещению;

3) нагревательных приборов для передачи тепла в помещение.

В проектируемой установке используется отопительная система, в которой от одного генератора отапливается несколько помещений, называемая центральной отопительной системой. Водяное отопление осуществляется циркуляцией сетевой воды по нагревательным приборам и относится к сетевой воде, используемой на собственные нужды ТЭЦ.

В качестве теплоносителя для нагрева воздуха принимается перегретая вода с температурой до 150 °С. В производственных помещениях поддерживается температура 20 °С; в санузлах и лестничных клетках температура 20 °С[14, с, 154].

Бытовые помещения

Помещения и устройства, которые предназначены для размещения службы быта, а также для культурного и санитарно-гигиенического обслуживания работников называются бытовыми. При проектировании установки с учетом группы производственных процессов в составе бытовых помещений предусматривается гардеробный блок. В один гардеробный блок объединяют гардеробные, душевые и умывальные помещения.

Гардеробные обеспечивают хранение личной одежды, спецодежды и спецобуви. Число мест для хранения одежды в гардеробных (при условии хранения одежды в шкафах) принимают равным списочному числу работающих. Душевые и умывальные размещают в смежных с гардеробными помещениях. Допускается размещение умывальников в гардеробных при условии, что расстояние от умывальников до шкафов с одеждой будет не менее 2 метров.[13, С.72]

При душевых помещениях предусматривают преддушевые. Преддушевые комнаты обеспечены скамейками и вешалками. Число душевых сеток проектировано из расчета три человека на одну душевую сетку и 15 человек на один умывальник в смену. При проектировании водоснабжения душевых учитывают, что расчетная продолжительность работы душевых составляет 45 минут для каждой смены.[13, С.72]

Уборные в производственных помещениях размещают равномерно по отношению к рабочим местам. Входы в уборные должны устраиваться через тамбуры с самозакрывающимися дверями. В тамбурах при уборных предусматривают умывальники из расчета один умывальник на четыре кабины.

Помещение для отдыха в рабочее время принимаем площадью 0, 2 м2 на одного работающего, но не менее 18 м2. Помещение для отдыха оборудуется умывальником с холодной и горячей водой, устройством питьевого водоснабжения и электрическим кипятильником [13, С.72].

Бытовые помещения изолированы от производственных помещений, особенно пожаро-, взрыво- и газоопасных. Допускается блокировка с такими помещениями, как щит КИПиА, конторские помещения и др.

Льготы для работающих

Так как на установке имеются вредные условия труда, то законодательством предусматривается система компенсации профессиональных вредностей.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 226; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.206 с.)
Главная | Случайная страница | Обратная связь