Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Построение расчётной индикаторной диаграммы



 

Теоретическую диаграмму строят по параметрам расчётного цикла, поэтому её называют также расчётной или проектной.

Построение диаграммы начинается с выбора масштабов P и V. По оси абсцисс откладывают объём [ ], а по оси ординат – давление [ ].

 

 

Где: А - объём в точке а, выраженный в мм.

Значения  и  найдём как

 

 

, тогда

Значит =0.004  и =0.06

Возьмём масштаб на диаграмме 10мм=0.00375

Тогда =149мм и =11мм и =160мм (Ox)

Далее принимаем масштаб для Pz(Oy)

Следовательно, 10мм=0.465МПа

Далее проводим ось давлений, атмосферную линию и линию выпуска.

Строим политропу сжатия аналитическим способом:


 

 ( =0.06 =160мм; =1.38; =0.105МПа)

Введём коэффициент А для расчётов в миллиметрах. А=21.5=

 

V 11 30 50 70 90 110 130 150 160
P 90 23 11 7 5 4 3 2.5 2.3

 

Кривую расширения строим аналогично кривой сжатия, но = .

( =0.06 =160мм; =1.25; =0.277МПа; b=21.5)

 

V’ 11 30 50 70 90 110 130 150 160
P’ 169 48 25.5 17 12 9.5 8 6.5 6

 

мм

Далее, выбрав Pr, откладываем его в масштабе и проводим линию выпуска; Pr=2.6мм

Спланиметрировав участок acz¢ zba диаграммы, получим её площадь F=2637 мм2, по которой найдём среднее теоретическое индикаторное давление:

 Па

Аналитически определяем среднее теоретическое индикаторное давление:

Расхождение между давлениями, определёнными графическими и аналитическими методами, не превышает 4%.

Среднее индикаторное давление с учётом поправки на полноту диаграммы:

Pi=j× P¢ i=0.96× 0.79955× 106=0.7675 МПа.

Где: j =0.95÷ 0.68 – поправка на полноту диаграммы.

 

Параметры, характеризующие рабочий цикл

 

К параметрам, характеризующим действительный рабочий цикл двигателя, относятся давление в конце сжатия, давление в конце горения, среднее индикаторное давление, среднее эффективное давление, эффективный расход топлива, эффективный КПД, а также проводятся диаметр цилиндра D и ход поршня S.

Среднее эффективное давление:

Pе=Pi× hм=0.7675× 0, 9=0.6908 МПа

Где: hм=0.89÷ 0.91 – механический КПД при работе на номинальной мощности для судовых СОД.

Удельный индикаторный расход топлива:

 кг/Дж

 кг/кВт· ч

Удельный эффективный расход топлива:

 кг/Дж

Индикаторный КПД:

Эффективный КПД:

Диаметр цилиндра:


мм

Ход поршня:

мм

Отношение  находится в пределах ГОСТа.


Динамический расчёт двигателя

 

Диаграмма движущих усилий

 

Удельные силы, действующие в кривошипно-шатунном механизме (КШМ) и отнесённые к единице площади поршня Р (н/ ), можно подразделить на четыре группы:

- удельные силы, образующиеся от давления газов на поршень Ps;

- удельные силы тяжести движущихся частей Pb;

- удельные силы инерции поступательно движущихся частей In;

- удельные силы трения в механизме двигателя Pт;

 Давление газов на поршень Pz – величина переменная при любом положении мотыля может быть определена по развёрнутой индикаторной диаграмме.

Сила тяжести Рв:

 Па

Где: m=1000÷ 3000 кг/м2 – удельная масса поступательно движущихся частей.

Удельные силы поступательно движущихся масс определяются как произведение удельной массы поступательно движущихся частей, отнесённой к единице площади поршня  [кг/ м2 ] на их ускорение а [м/с2]

 

 

При построении диаграммы движения усилий в качестве оси абсцисс принимают атмосферную линию и строят развёрнутую индикаторную диаграмму.

Вниз от атмосферной линии откладывают удельную силу тяжести движущихся частей и проводят пунктирную линию.

Далее по формуле ( ) строим кривую сил инерции. При направлении сил инерции вверх, ординату тоже направляем вверх.

 - для ВМТ

 - для НМТ

 

R=

Где: R – радиус мотыля

L – длина шатуна.

-1] – угловая скорость вращения коленчатого вала.

Следовательно

С достаточной степенью точности кривую удельных сил инерции можно построить по способу Толле, для чего следует отложить расстояние АВ в масштабе абсцисс развёрнутой индикаторной диаграммы, а затем из точки А в масштабе ординат развёрнутой диаграммы отложить удельную силу инерции в ВМТ (верхней мёртвой точке) Ino.

В том же масштабе из точки В вниз откладывают удельную силу инерции в НМТ. Точки C и D соединяют прямой. Из точки пересечения CD с АВ откладывают вниз в принятом масштабе ординат величину EF, равную:

 

Переведём полученные значения в миллиметры: АС=37.63мм

ВD=22.36мм

АВ=120мм

EF=22.45мм

Точку F соединяют прямыми с точками C и D. Линии CF и FD делят на одинаковое число равных частей и соединяют точки одного и того же номера прямыми. Через точки C и D по касательным и прямым, соединяющим одинаковые номера, проводят главную огибающую линию, которая и будет кривой удельных сил инерции.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 175; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь