Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕТРА



ВВЕДЕНИЕ.

 

На пороге XXI века человек все чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Люди прошли путь от первого костра до атомных электростанций.

Существуют «традиционные» виды альтернативной энергии: энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов. На основе этих природных ресурсов были созданы электростанции: ветряные, приливные, геотермальные, солнечные.

                                     Ветряные электростанции.

Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Генератор в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают, как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.

                                     Приливные электростанции.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция (Паужетская)
мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн — перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины, которые вращают генератор. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

                                  Геотермальные электростанции.

Электростанции такого типа преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. Первая геотермальная электростанция была построена на Камчатке. Существует несколько схем получения электроэнергии на геотермальной электростанции. Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

                                      Солнечные электростанции.

В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции башенного типа и солнечные электростанции распределенного (модульного) типа.

В башенных солнечных электростанциях используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550º С, воздух и другие газы — до 1000º С, низкокипящие органические жидкости (в том числе фреоны) — до 100º С, жидкометаллические теплоносители — до 800º С.

                                  Тепловые электростанции.

Тепловые электростанции работают по такому принципу: топливо сжигается в топке парового котла. Выделяющееся при горении тепло испаряет воду, циркулирующую внутри расположенных в котле труб, и перегревает образовавшийся пар. Пар, расширяясь, вращает турбину, а та, в свою очередь, — вал электрического генератора. Затем отработавший пар конденсируется; вода из конденсатора через систему подогревателей возвращается в котел.

                                         Гидроэлектростанции.

Гидрозлектростанции преобразуют энергию потока воды в электроэнергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Наибольший КПД гидроэлектростанция имеет тогда, когда поток воды падает на турбину сверху. Для этих целей строится плотина, поднимающая уровень воды в реке и сосредотачивающая напор воды в месте расположения турбин.

                                       Атомные электростанции.

Такие электростанции действуют по такому же принципу, что и «ТЭС, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана. Ядерный реактор работает на основе цепной ядерной реакции, когда деление одного ядра вызывает деление других ядер; таким образом, реакция сама себя поддерживает.

                                Термоядерные электростанции.

В настоящее время ученые работают над созданием Термоядерных электростанций, преимуществом которых является обеспечение человечества электроэнергией на неограниченное время. Термоядерная электростанция работает на основе термоядерного синтеза — реакции синтеза тяжелых изотопов водорода с образованием гелия и выделением энергии. Реакция термоядерного синтеза не дает газообразных и жидких радиоактивных отходов, не нарабатывает плутоний, который используется для производства ядерного оружия. Если еще учесть, что горючим для термоядерных станций будет тяжелый изотоп водорода дейтерий, который получают из простой воды — в полулитре воды заключена энергия синтеза, эквивалентная той, что получится при сжигании бочки бензина, — то преимущества электростанций, основанных на термоядерной реакции, становятся очевидными.

 

ГЛАВА 1 Ветроэнергетика

 

История развития

 

Развитие любой страны в значительной мере связано с обеспеченностью ресурсами, в том числе энергетическими. Установлено, что темпы прироста национального дохода примерно соотвецтвуют темпам роста потребление энергии.

Человек всегда стремился использовать силы природы, развитие производственных процессов потребовало перехода от применения мускульной силы к использованию новых источников энергии. Прежде всего человек обратился к силе воды и ветра, которые использовались в промышленном производстве, но главным образом в сельском хозяйстве.

Впервые энергия ветра была использована, по- видимому, для передвижения парусных судов, а позднее-также для подъема воды и размола зерна. Первые ветряные двигатели, по предположению – с вертикальной осью вращения, были построены более 2 тыс. лет назад. Вавилоняне еще до нашей эры использовали их для осушения болот, в Египте, на Ближнем Востоке, в Персии строили ветряные водоподъемники и мельницы. До настоящего времени в некоторых странах бассейна Средиземного моря можно встретить ветряные мельницы с крыльями, имеющими поперечные паруса.

В Европе, вначале во Франции, ветряные мельницы появились в ХХII в. Ф.Энгельс писал, что « ветряная мельница была изобретена около 1000 г.». В Англии работали мельницы, однотипные по принципу действия с французскими. В Германии первая мельница была построена в 1393 г. Из Германии они распространились в другие страны. В ХIV столетии голландцы широко использовали ветряные мельницы для осушения болот и озер. В начале ХVII в. большая часть территории осушалась с помощью ветроустановок мощностью до 30 – 35 кВт. В этот же период появились усовершенствованные конструкции мельниц и новые ветряные двигатели, которые использовали для привода машин бумагоделательных фабрик, лесопилок и других устройств. В 30-х годах ХVIII в. в Голландии работали 1200 ветроустановок, которые предохраняли 2/3 страны от обратного превращения в болота. Первое изложение теории ветродвигателя относят к началу ХVIII в. В более систематизированном виде она появилась в конце ХIХ в. в Америке и Европе.

Конструкции первых ветряных мельниц в России были, по-видимому, заимствованы в Германии, и их называли немецкими. К началу ХVIII в. число мельниц стало значительным, и их применение приобрело государственное значение. Многое для их распространения в России сделал Петр 1. В ХVIII – ХIХ вв. мельницы сооружались практически повсеместно, и к началу первой мировой войны в России эксплуатировалось более 200 тыс. мельниц, которые ежегодно перемалывали 2/3 всего товарного зерна.

К середине прошлого столетия в США эксплуатировалось почти 6 млн. маломощных ветродвигателей для подъема воды, выработки электроэнергии и выполнения других простых работ. Более 150 тыс. установок насчитывается в США и сегодня.

В России наряду с кустарными мельницами в начале прошлого столетия началось изготовление в заводских условиях ( в мастерских) тихоходных многолопастных деревометаллических ветродвигателей системы инж. В.П. Давыдова, которые применяли главным образом для механизации подъема воды. Некоторое число ветродвигателей завезли из Германии, Франции и США, где их производство было налажено несколько раньше. В основном выпускалось многолопастные двигатели, но они уже были снабжены системами автоматического регулирования скорости вращения и мощности, механизмами ориентации ветроколеса по направлению потока. Суммарный годовой выпуск в основных промышленно развитых странах составлял сотни тысяч двигателей. Позднее, в начале нашего столетия, ряд стран ( США, Франция, Германия, Австралия, Великобритания и.др.) начал в значительных количествах выпускать на заводах также и более совершенные по конструкции и экономичные быстроходные ветроагрегаты, предназначенные в первую очередь для получения электрической энергии. Их использовали для освещения небольших и удаленных объектов и зарядки аккумулярных батарей.

В нашей стране широкое развитие научно-исследовательских и опытно-конструкторских работ в области ветроэнергетики началось буквально с первых дней Советской власти. Уже в 1918 г. В.И.Ленин считал необходимым поручить Академии наук включить в план реорганизации промышленности и экономического полъема России наряду с другими проблемами водные силы и ветряные двигатели вообще и в применении к земледелию. Через 3 года он снова возвращается к этому вопросу и в письме к А.П. Серебровскому подчеркивает важность использования ветродвигателей в Азербайджане. В.И. Ленин указывал на необходимость использования непервоклассных сортов топлива для получения электрической энергии с наименьшими затратами на добычу и перевозку горючего. Именно поэтому он придавал большое значение таким энергетическим источникам, как ветер.

Первый этап развития ветроэнергетики в нашей стране ( до середины 30-х годов) характеризуется в основном теоретическими исследованиями. Н.Е. Жуковским и его учениками Г.Х. Сабининым, В.П. Ветчинкиным и др. была разработана теория идеального и реального ветродвигателей, которойпользуются во всем мире. В тот же период созданы аэродинамические профили высокого качества для лопастей ветроколес, спроектированы опытные установки и проведены продувки моделей в трубах, изучены характеристики ветродвигателей. Проводились испытания различных конструкций ветроагрегатов и установок, совершенствовались методы их расчета и проектирования.

Параллельно велись работы по созданию новых моделей и типовветродвигателей. Уже в 1924 году под руководством Н.В. Красовского в отделе ветродвигателей (ОВД) ЦАГИ был разработан быстроходный двигатель мощностью до 50 л.с. с новой системой регулирования частоты вращения колеса, предложенной Г.Х. Сабининым. Она получила название стабилизаторной. С целью расширения работ по созданию ветродвигателей и использованию энергии ветра в 1930 г на базе ОВД ЦАГИ был организован Центральный ветроэнергетический институт (ЦВЭИ), единственный в мире в то время научно исследовательская оргонизация такого профиля.

В те годы удалось быстро разработать конструкции тихоходных ветродвигателей ВД-5 и ВД-8 для серийного производства. После модернизации эти двигатели, предназначенные для подъема воды, а также для работы с некоторыми сельскохозяйственными машинами (мельницами, дробилками кормов, силосорезками и др.), начали выпускать в больших количествах под марками ТВ-5 и ТВ-8. Была также создана конструкция и освоено производство быстроходного ветродвигателя Д-12 со стабилизаторной системой регулирования, который использовался в сельском хозяйстве, в Арктике, на зимовках, на метеостанциях и для энергоснабжения других объектов.

В связи с началом электрофикации сельского хозяйства были организованы работы по созданию ветроэлектрических станций (ВЭС). В 1930 году была спроектирована, а в 1931 году сооружена в Крыму самая крупная в мире ВЭС Д-30 мощностью 100 кВт. Станция работала до 1942 года и давала электроэнергию в сеть Севастопольэнерго напряжением 6300 В. Среднегодовая выработка энергии ВЭС превышала 270 МВт.ч. Во время Великой отечественной войны она была разрушена. К этому же периоду относится создание в нашей стране проектов самых крупных в мире ВЭС мощностью 1000 и 5000 кВт, которые не смогли быть реализованы из-за войны.

С 1936 г. основные проектные и следовательские работы по использованию энергии ветра, в первую очередь для нуждсела, были переданы Всесоюзному НИИ механизации сельского хозяиства (ВИМ). В 1938 г. в составе Всесоюзного научно- исследовательского института сельскохозяйственного машиностроения (ВИСХОМ) было организовано конструкторское бюро по серийным ветродвигателям. Ряду предприятий поручили выпуск установок. За 4 предвоенных года только в колхозах и совхозах было построено более 8000 ветросиловых установок, с помощью которых механизировали трудоемкие процессы на фермах, в первую очередь водоснабжение животных.

В этот период и в первые послевоенные годы был принят ряд партийных и правительственных постановлений о развитии ветроиспользования. ХVIII съезд партии в резолюции по 3-му пятилетнему плану (1938-1942 гг.) указал на необъходимость в целях экономии топлива широко развить строительство небольших ветроэлектростанций, организовать массовое производство ветродвигателей и широко развернуть сооружение колхозных ветросиловых установок.

В годы Великой Отечественной войны, когда не хватало топлива, в деревне широко развернулось строительство ветряных мельниц. Сразу после окончания войны было организовано промышленное производство модернизированных ветродвигателей типов ТВ-5, ТВ-8, УНДИМ-Д-10, электрических зарядных ветроагрегатов небольшой мощности и других установок, созданы и выпущены опытными партиями ветроэлектрические станции Д-18 и 1Д-18 ЦАГИ мощностью 30кВт. В законе о 4-м пятилетнем плане развития народного хозяйства страны записано: « Обеспечить массовое строительство ветростанций».

В годы, предшествовавшие второй мировой воине, и вплоть до середины 50-х годов во многих странах нарядус расширением масштабов производства и применения ветродвигателей небольшой и средней мощности большое внимание начали уделять созданию и строительству крупных ВЭС. Так, в начале 1941г. в США была построена станция 1, 25 МВт с двухлопастным ветроколесом. Несколько лет она успешно работала, вырабатывая энергию, которая поступала в местную электрическую сеть. В марте 1945 г. ее эксплуатация была прекращена вследствии повреждения одной из лопастей, вызванного вибрацией.

После войны датчане создали три типа ВЭС мощностью 12, 45 и 200 кВт для работы на электрическую сеть. Великобритания построила для испытаний несколько демонстрационных 100 киловатных ветроэлектростанций, в том числе одну установку принципиально нового типа системы Андро с пневматической передачей мощности от ветроколеса генератору, установленному вместе с воздушной турбиной в нижней части машины.

Под руководством проф. У.Хюттера в Германии был осуществлен ряд усовершенствований ВЭС. Самая крупная из них имела расчетную мощность 100 кВт. Наиболее совершенными из них были установки фирмы Allgaier.

Французские ученые и конструкторы создали несколько ветроэлектрических станций мощностью от 130 до 800 кВт с синхронным и асинхронными генераторами. Они работали на электрические сети совместно с другими, в основном тепловыми, электростанциями. В этот же период велись работы в области ветроэнергетики в Швеции, Австралии, Канаде, Нидерландах, Аргентине, Мексике и в ряде других стран.

В нашей стране 50-е годы явились новым этапомдальнейшего расширения работ в области использования энергии ветра. В августе 1954 г. Совет Министров СССР принимает развернутое постановление о дальнейшем развитии ветроэнергетики и расширение масштабов использования ресурсов ветра, которым были определены задания по организации исследований, разработке новых конструкций ветроагрегатов, их производству и внедрению в народное хозяйство, улучшению эксплуатации. Была создана Центральная научно-исследовательская лаборатория по ветродвигателям (ЦНИЛВ), группы или лаборатории ветроэнергетики в ряде республиканских научно-исследовательских и проектных институтов. Основное внимание в этот период уделялось использование энергии ветра в сельскохозяиственном производсте.

Уже в середине 50-х годов резко возрос выпуск ветроэнергетического оборудования различных типов только в 1956 г. было произведено 9 тыс. ветродвигателей. Одновременно во Всесоюзном НИИ электрификации сельского хозяйства (ВИЭСХ) расширились исследования в области эксплуатации ветроустановок, их агрегатирования с рабочими машинами и генераторами по вопросам аэродинамики расширились работы в ЦАГИ. Разработками ветроэнергетического кадастра, вопросов аккумулирования энергии, новых методов расчета конструкции и оптимизации сфер применеия, исследованиями в области повышения надежности и эффективности эксплуатации был занят ряд центральных и республиканских институтов и организаций. Были изобретены новые системы регулирования ветродвигателей, разработаны эффективные методы использования ВЭС, конструкции ветроагрегатов различного назначения, в том числе для пастбищного водоснабжения «Беркут» с электронасосом повышенной частоты, УВЭУ-(1-4)-6 (ныне АВЭУ-6), снабженный погружным электронасосом с двигателем промышленной частоты, ВБ-3Т с насосом вибрационного типа и ряд других. В Казахстане была сооружена многоагрегатная ВЭС мощностью 400кВт, построены и испытаны образцы агрегатов и станций мощностью от 0, 2 до 30 кВт.В 1971 году на ряде заводов был организован выпуск опытных партий агрегатов четырёх типов и проведена их эксплуатационная проверка на пасдбищах Чёрных земель Кизлярских степей ив других зонах. Продолжались работы над созданием ветрооогрегата Вихрь с пневмотическим насосом, электрических агрегатов Сокол и УВЕУ-(8-16)-12 мощностью 15 кВт а так же разрабатывались проекты более мощных экспериментальных ВЭС до 100кВт предназначенных для комплексного использование.

По неполным данным ЮНЕСКО, в 1960г. в мире насчитывается более 1 млн ВЭС различных типов и назначение, в том числе более полумиллиона быстроходных ветроэлектрических агрегатов. Большинство ветродвигателей использовалось в системах сельскохозяйственного водоснабжения, для зарядки аккумуляторных батарей и пмиания энергией небольших объектов, на линиях радиорелейной связи и для других целей в районах с благоприятным ветровым режимом, удаленных от источников централизованного энергоснабжения, В 1968 г. только в Австралии эксплуатировалось почти 250 тыс. ветроустановок.

В годы так называемого «энергитического кризиса» (начало 70-хгодов), вызванного увеличением во всем мире потребления энергии, постепенным сокращением запасов традиционных энергоресурсов и ростом цен на жидкое топливо, во многих странах резко расширились работы по использованию возобновляющихся источников энергии, в первую очередь Солнца, ветра, теплоты недр Земли и др. В соответствии с национальными энергетическими программами созданы новые более эффективные ветроустановки и станции с единичной мощностью до 2-3 Мвт, ведутся разработка новых конструкций и поиск экономичных технологий преоброзования энергии ветра в электрическую, химическую энергию и теплоту. По существу ставится и решается проблема технического перевооружения этого направления энергетики на основе широкого использования результатов фундаментальных и прикладных исследований, внедрения достижений НТР.

Дальнейшее развитие ветроэнергетики как отрасли науки и техники, разрабатывающей теоритические основы, методы и средства использования энергии ветра для производства механической, электрической энергии и теплоты, является важной народнохозяйственной проблемой. Одна из задач отрасли- на каждом из этапов развития страны определять масштабы целесообразного использования ветровой энергии в народном хозяйстве.Из двух составных частей ветроэнергетики- ветротехники и ветроиспользования – первая призвана разрабатывать теоретические основы и совершенствовать практические приемы проектирования технических средств, вторая – обосновывать и решать теоретические и практические вопросы оптимального использования ресурсов ветровой энергии, рациональной эксплуатации установок, определения их технико- экономических показателей, обобщения и распространения опыта применения ветроустановок в различных отраслях, зонах и условиях, чтобы решить главную задачу – обеспечить потребность страны в энергии.

 

ВЕТЕР КАК ИСТОЧНИК ЭНЕРГИИ.

 

Ветер в приземном слое образуется вследствие неравномерного нагре­ва земной поверхности Солнцем. Поскольку поверхность Земли неодно­родна, то даже на одной и той же широте суша и водные пространства, горы и лесные массивы, пустыни и болотистые низины нагреваются по-разному. В течение дня над морями и океанами воздух остается сравни­тельно холодным, поскольку значительная часть энергии солнечного излу­чения расходуется на испарение воды или поглощается ею. Над сушей воздух прогревается больше, расширяется, снижает свою массовую плот­ность и устремляется в более высокие слои над землей. Его замещают бо­лее холодные, а следовательно, более плотные воздушные массы, распо­лагавшиеся над водными пространствами, что и приводит к возникнове­нию ветра как направленному перемещению больших масс воздуха. Эти местные ветры, образующиеся в прибрежных зонах, носят название бри­зов. Годовые изменения температуры в береговых районах больших мо­рей и океанов вызывают циркуляцию более крупного масштаба, чем бри­зы, называемые муссонами. Они делятся на морские и материковые, от­личаются, как правило, большими скоростями и в течение ночи меняют свое направление. Аналогичные процессы происходят в гористых местах и долинах вследствие разных уровней нагрева экваториальных зон и полю­сов Земли и многих других факторов. Характер циркуляции земной ат­мосферы усложняется вследствие сил инерции, возникающих при враще­нии Земли. Они вызывают различные отклонения воздушных течений, об­разуется множество циркуляции, в большей или меньшей мере взаимо­действующих между собой.

Сила и направление ветра в различных зонах по-разному изменяются в зависимости от высоты над поверхностью Земли. Так, на экваторе близко к земной поверхности расположена зона с относительно небольшими и переменными по направлению скоростями ветра, а в верхних слоях возни­кают достаточно большие по скорости воздушные потоки в восточном направлении. На высоте от 1 до 4 км от поверхности Земли, в зоне между 30° северной и южной широт образуются достаточно равномерные воз­душные течения, называемые пассатами. В северном полушарии ближе к поверхности Земли их средняя скорость составляет 7 — 9 м/с.

Вокруг зоны пониженного давления образуются крупномасштабные циркуляции воздушных масс — в северном полушарии против направле­ния движения часовой стрелки, а в южном — по направлению ее движе­ния. Вследствие наклона 23, 5° оси движения Земли к плоскости ее враще­ния относительно Солнца происходят сезонные изменения тепловой энер­гии, получаемой от него, величина которых зависит от силы и направле­ния ветра над определенной зоной земной поверхности. 36

На относительно большой высоте над поверхностью Земли (в среднем 8-12 км) в тропосфере возникают достаточно равномерные и мощные воздушные течения, получившие название струйных. Их образование вызвано особенностями высотной атмосферной циркуляции, поэтому характеристики струйных течений существенно отличаются от параметров приземного ветра.

Размеры струйных течений в поперечнике достигают 400-600 км, а протяжен­ность - др 1000 км. Обычно они не подвержены большим сезонным изменениям, но могут менять свое расположение по высоте. Так, над Восточной Сибирью и Чу­коткой они иногда опускаются до высоты 3-4 км от поверхности Земли. Ско­рости воздушных масс в ядре струйного течения составляют 30-80 км/ч, но часто доходят до 200 км/ч.

Таким образом, тепловая энергия, непрерывно поступающая от Солнца, преобразуется в кинетическую энергию движения в атмосфере огромных масс воздуха, циркуляция которых и называется ветром.

 

Рис. 1.3. Роторный ветродвигатель

Рис. 1.4. Барабанный ветродвигатель

Разновидностью двигателей карусельного типа являются роторные двигатели, у которых рабочие поверхности выполнены не плоскими, а криволинейными (рис. 4.5). Поэтому давление на них при движении по направлению действия потока и против него разное, что и обусловлива­ет возникновение вращающего момента. Двигатели с плоскими рабочи­ми поверхностями, вращающимися относительно горизонтальной оси, получили название барабанных (рис. 4.6).

Все перечисленные типы двигателей работают в результате наличия разности сил лобового давления, образуемых относительно оси враще­ния. При этом нетрудно показать, что наибольшую мощность двигатель развивает в том случае, когда рабочая плоскость, воспринимающая давле­ние ветра, движется по направлению потока со скоростью, примерно рав­ной 1/3 его скорости. Большинство из указанных типов двигателей имеет весьма простую конструкцию, но тем не менее они не нашли широкого распространения из-за своей тихоходности, громоздкости, малого значе­ния коэффициента использования энергии ветра ij (в лучших условиях он не превышает 0, 18), больших трудностей, возникающих при необходи­мости оборудования их системами автоматического регулирования разви­ваемой мощности и частоты вращения.

В последние годы в ряде зарубежных стран (США, Канаде, Аргентине, Великобритании и др.) большое внимание привлекли к себе ветродвига­тели с вертикальной осью вращения, предложенные в 30-х годах фран­цузским изобретателем Дарье. Этот ветродвигатель (рис. 4.7) отличает­ся тем, что его ветроприемное устройство — ротор состоит из двух-четы­рех изогнутых лопастей, имеющих в поперечном сечении аэродинамичес­кий профиль. Лопасти, закрепленные в точках А и Б на оси вращения, изогнуты так, что образуют пространственную конструкцию, вращаю­щуюся под действием подъемной силы, возникающей на лопастях от ветрового потока. Это позволяет повысить величину £ до 0, 3—0, 32. Пре­имуществами такого ветродвигателя являются его меньший относитель­ный вес на единицу мощности, чем у других типов двигателей с верти-

риc. 1.5. Ветродвигатель (ротор) системы Дарье:

1 - лопасти; 2 - вал; 3 - растяжки; 4 - опора; 5 - привод

кальной осью вращения, большая быстроходность. Кроме того, в отли­чие от двигателей с горизонтальной осью система Дарье не нуждается в механизме ориентации по направлению ветрового потока.

Более совершенными двигателями являются так называемые крыль-чатые ветродвигатели с горизонтальной осью вращения ветроколеса, ра­бочий момент на котором создается за счет аэродинамических сил, воз­никающих на лопастях, которые в простейших конструкциях представ­ляют собой плоскости. В современных агрегатах применяют лопасти, имеющие специальный аэродинамический профиль. Они появились при­мерно в IV—III в. до н. э. в Александрии [321.

Рис. 1.6. Принципиальная схема ветродвигателя крыльчатого типа с горизонтальной осью вращения:

/ - редуктор; 2 - генератор; 3 - вертикальный вал

Рис. 1.7. Принцип работы ветроколеса:

а - подъемная сила крыла Ру; б - план скоростей воздушного потока и сил, действующих на лопасть

Такие ветродвигатели более быстроходные, имеют меньшую относительную массу, снабжены устройствами, автоматически регулирующими развиваемую мощность, ограничивающими частоту вращения и ориентирующими ось вращения ветроколеса по направлению вектора скорости потока. Коэф­фициент использования энергии ветра у них примерно в 3 раза выше, чем у двигателей карусельного, роторного и барабанного типов.

В большинстве стран производят и применяют только крыльчатые вет­родвигатели. Двигатели других типов изготовляют обычно кустарным пу­тем или производят в очень небольших количествах. Поэтому в дальней­шем мы будем рассматривать только агрегаты и установки с двигателями крыльчатого типа. Основным рабочим органом такого двигателя являет­ся ветроколесо с лопастями, расположенными по радиусам и под некото­рым углом tp к плоскости вращения. Число лопастей может быть различ­ным и зависит от назначения двигателя. При обтекании воздушным пото­ком крыла под ним создается зона повышенного давления, а над ним, напротив, пониженного. Это обусловливает возникновение подъемной силы Pv, которая создает вращающий момент на ветроколесе

Электрические зарядные ветроагрегаты, предназначенные для зарядки аккумуляторов с целью освещения жилищ чабанов, полевых станов, юрт оленеводов, палаток и домиков различных экспедиций, а также для пита­ния сигнальных устройств, радиоузлов, приемников и телевизоров, обыч­но имеют мощность 1 кВт и используются в неэлектрифицированных, удаленных от линий электропередачи и малонаселенных районах, где vv > 3, 5 м/с. Агрегаты мощностью от 50 Вт до 1, 5 кВт применяют также в качестве энергоустановок для питания устройств катодной защиты ма­гистральных нефте- и' газопроводов, морских эстакад, питания автома­тических метеостанций и опреснительных установок индивидуального пользования. Агрегаты снабжены аккумуляторными батареями низкого напряжения (6—24 В), которые работают в буферном режиме.

Агрегат АВЭУ-2 (прежняя марка — АВЭС-0, 1) имеет следующие узлы (рис. 5.26): ветроколесо 1 диаметром 2 м, головка 2, хвост 3, стойка 4 и электрический щиток с аккумуляторной батареей. Стойка головки при­креплена к опорному столбу 5 и растяжками 6, на котором укреплен ры­чаг ручного управления, с помощью которого, тормозя вал генератора, останавливают агрегат.

Ветроколесо имеет две металлические лопасти, поворачивающиеся в подшипниках втулки, закрепленной- на валу генератора. Центробежный регулятор работает по такому же принципу, как 'и агрегат «Беркут». В зависимости от скорости ветра и величины нагрузки частота вращения изменяется в диапазоне от 300 до 800 об/мин.

На стойке, несущей ферму с хвостовым оперением, закреплен генера­тор с возбуждением от постоянных магнитов. В нем расположены трех­фазная неподвижная статорная обмотка и ротор в виде восьмиполюсного постоянного магнита. Они размещены в корпусе из алюминиевого сплава. В зависимости от способа соединения обмоток генератор вырабатывает ток напряжением 26 или 15 В.

Генератор соединен с электрическим щитком трехжильным кабелем, пропущенным сквозь трубу стойки, которая может поворачиваться в

 

Скорость ветра, м/с
Показатели —-------------------------------- 4   5    6     7 8 и выше
Мощность, кВт 0, 8 1, 6  4, 5 7, 8 12 Qnpи H#Ј=50M- 5, 9 11, 3 14, 1 16 Q при H #2 = 100 м - 4, 6  9, 7 12    15

 

Таблица 1

Полезная мощность и подача агрегата «Сокол», м3/чупорном шарикоподшипнике и направляющей втулке. Щиток имеет один-два селеновых выпрямителя, собранных по трехфазной двухполу-периодной схеме, амперметр для контроля работы агрегата, выключатели, предохранитель и зажимы для присоединения нагрузки к аккумулятор­ной батарее (рис. 5.27). Транзисторный преобразователь используется для питания телевизора.

Рис.1.9. Электрическая схема агрегата АВЭУ-2:

/ - ветроэлектроагрегат; 2 — электрощит; 3 - преобразователь; 4 - телевизор; 5 - радиоприемник; 6 - аккумуляторные батареи; 7 - электрическое освещение

Рис. 1.10. Электрический агрегат Д-4 для зарядки аккумуляторных батарей

 

Для предохранения батарей от перезаряда и выкипания электролита предусмотрена релейная автоматика, которая подключа­ет к генератору дополнительную нагрузку при достижении напряжения аккумулятора 15 В и избытке мощности. Этим снижаются напряжение и ток заряда до 0, 5 - 1 А.

Агрегат работает с аккумуляторными батареями 6СТ-128 или ЗСТ-84 напряжением 6, 12 или 24 В.

Агрегат Д-4 представляет интерес как пример весьма прос­того по конструкции и устойчивого в работе устройства для получения электрической энергии. Он имеет ветроколесо с регулятором частоты вра­щения, редуктор, генератор, опору с хвостом, опорный столб с растяж­ками и рычагом механизма ручного пуска и останова, а также электри­ческий щиток. Простейший по конструкции редуктор и генератор постоян­ного тока мощностью 750 Вт составляют головку Колесо и ре­гулятор по принципу действия такие же, как у агрегата «Беркут».

 


ГЛАВА 2

ПРЕОБРАЗОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА

СИСТЕМЫ ОТЕС

В августе 1979 г, вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48, 7 кВт, максимальная — 53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее — на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один — для подачи теплой воды из океана, второй — для подкачки холодной воды с глубины около 700 м, третий — для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочей жидкости применяется аммиак,

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Труба сваривалась на берегу из 58 секций. Выбор полиэтилена связан с тем, что он как будто не подвержен обрастанию и, следовательно коррозии (создание 700-метрового трубо­провода было самым трудным делом). Трубопровод при­креплен к днищу судна с помощью особого затвора, позволяющего в случае необходимости ого быстрое отсоеди­нение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба—судно. Оригиналь­ность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной пробле­мой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полу­ченный при эксплуатации мини-ОТЕС, позволил быстро достроить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощ­ных систем подобного типа.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 62; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.058 с.)
Главная | Случайная страница | Обратная связь