Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Рис1.1. Карусельный ветродвигатель-шторка



 

Рис 1. 2. Модель карусельного ветродвигателя с поворачивающимися лопастями

1 - вертикальная ось; 2 - горизонтальные планки; 3 - поворачивающиеся лопасти; 4 -ось лопасти

 

Следовательно, секундная энергия, или мощность воздушного потока, пропорциональна его плотности, плошали поперечного сечения и кубу скорости.

Часть полной энергии потока, воспринятой ветроколесом, которую вет­родвигатель преобразует в механическую энергию, оценивается коэффи­циентом использования энергии ветра

                                                                              

 который зависит от типа ветродвигателя и режима его работы.

Секундная работа или мощность, Н-м/с, развиваемая ветроколесом, оп­ределяется по формуле

Р= pv3F

Так как плотность воздуха очень мала (в 800 раз меньше плотности воды), то для получения относительно больших мощностей приходится применять ветродвигатели со значительной поверхностью ветроколеса. Постоянные изменения скорости v приводят к тому, что мощность, раз­виваемая двигателем, изменяется в очень больших пределах: от нуля во время штиля до величины, в десятки раз превосходящей установленную мощность, на которую рассчитывают ветродвигатель при расчетной ско­рости ветра. Для преобразования кинетической энергии воздушного потока в меха­ническую энергию могут быть использованы ветродвигатели различных типов. Первыми (примерно в XVIII в. до н.э.) появились, по-видимому в Персии и Китае, двигатели с вертикальной осью вращения, как наиболее простые. Они получили название карусельных. Чтобы получить вращаю­щий момент на оси, лопасти, движущиеся навстречу ветру, должны быть прикрыты шторкой (рис. 4.3) или поворачиваться ребром к потоку (рис. 4.4). Для этого они укрепляются на оси с помощью шарниров и на активном участке пути (в зоне А) фиксируются в нужном положении специальными устройствами (упорами).

Рис. 1.3. Роторный ветродвигатель

Рис. 1.4. Барабанный ветродвигатель

Разновидностью двигателей карусельного типа являются роторные двигатели, у которых рабочие поверхности выполнены не плоскими, а криволинейными (рис. 4.5). Поэтому давление на них при движении по направлению действия потока и против него разное, что и обусловлива­ет возникновение вращающего момента. Двигатели с плоскими рабочи­ми поверхностями, вращающимися относительно горизонтальной оси, получили название барабанных (рис. 4.6).

Все перечисленные типы двигателей работают в результате наличия разности сил лобового давления, образуемых относительно оси враще­ния. При этом нетрудно показать, что наибольшую мощность двигатель развивает в том случае, когда рабочая плоскость, воспринимающая давле­ние ветра, движется по направлению потока со скоростью, примерно рав­ной 1/3 его скорости. Большинство из указанных типов двигателей имеет весьма простую конструкцию, но тем не менее они не нашли широкого распространения из-за своей тихоходности, громоздкости, малого значе­ния коэффициента использования энергии ветра ij (в лучших условиях он не превышает 0, 18), больших трудностей, возникающих при необходи­мости оборудования их системами автоматического регулирования разви­ваемой мощности и частоты вращения.

В последние годы в ряде зарубежных стран (США, Канаде, Аргентине, Великобритании и др.) большое внимание привлекли к себе ветродвига­тели с вертикальной осью вращения, предложенные в 30-х годах фран­цузским изобретателем Дарье. Этот ветродвигатель (рис. 4.7) отличает­ся тем, что его ветроприемное устройство — ротор состоит из двух-четы­рех изогнутых лопастей, имеющих в поперечном сечении аэродинамичес­кий профиль. Лопасти, закрепленные в точках А и Б на оси вращения, изогнуты так, что образуют пространственную конструкцию, вращаю­щуюся под действием подъемной силы, возникающей на лопастях от ветрового потока. Это позволяет повысить величину £ до 0, 3—0, 32. Пре­имуществами такого ветродвигателя являются его меньший относитель­ный вес на единицу мощности, чем у других типов двигателей с верти-

риc. 1.5. Ветродвигатель (ротор) системы Дарье:

1 - лопасти; 2 - вал; 3 - растяжки; 4 - опора; 5 - привод

кальной осью вращения, большая быстроходность. Кроме того, в отли­чие от двигателей с горизонтальной осью система Дарье не нуждается в механизме ориентации по направлению ветрового потока.

Более совершенными двигателями являются так называемые крыль-чатые ветродвигатели с горизонтальной осью вращения ветроколеса, ра­бочий момент на котором создается за счет аэродинамических сил, воз­никающих на лопастях, которые в простейших конструкциях представ­ляют собой плоскости. В современных агрегатах применяют лопасти, имеющие специальный аэродинамический профиль. Они появились при­мерно в IV—III в. до н. э. в Александрии [321.

Рис. 1.6. Принципиальная схема ветродвигателя крыльчатого типа с горизонтальной осью вращения:

/ - редуктор; 2 - генератор; 3 - вертикальный вал

Рис. 1.7. Принцип работы ветроколеса:

а - подъемная сила крыла Ру; б - план скоростей воздушного потока и сил, действующих на лопасть

Такие ветродвигатели более быстроходные, имеют меньшую относительную массу, снабжены устройствами, автоматически регулирующими развиваемую мощность, ограничивающими частоту вращения и ориентирующими ось вращения ветроколеса по направлению вектора скорости потока. Коэф­фициент использования энергии ветра у них примерно в 3 раза выше, чем у двигателей карусельного, роторного и барабанного типов.

В большинстве стран производят и применяют только крыльчатые вет­родвигатели. Двигатели других типов изготовляют обычно кустарным пу­тем или производят в очень небольших количествах. Поэтому в дальней­шем мы будем рассматривать только агрегаты и установки с двигателями крыльчатого типа. Основным рабочим органом такого двигателя являет­ся ветроколесо с лопастями, расположенными по радиусам и под некото­рым углом tp к плоскости вращения. Число лопастей может быть различ­ным и зависит от назначения двигателя. При обтекании воздушным пото­ком крыла под ним создается зона повышенного давления, а над ним, напротив, пониженного. Это обусловливает возникновение подъемной силы Pv, которая создает вращающий момент на ветроколесе

Электрические зарядные ветроагрегаты, предназначенные для зарядки аккумуляторов с целью освещения жилищ чабанов, полевых станов, юрт оленеводов, палаток и домиков различных экспедиций, а также для пита­ния сигнальных устройств, радиоузлов, приемников и телевизоров, обыч­но имеют мощность 1 кВт и используются в неэлектрифицированных, удаленных от линий электропередачи и малонаселенных районах, где vv > 3, 5 м/с. Агрегаты мощностью от 50 Вт до 1, 5 кВт применяют также в качестве энергоустановок для питания устройств катодной защиты ма­гистральных нефте- и' газопроводов, морских эстакад, питания автома­тических метеостанций и опреснительных установок индивидуального пользования. Агрегаты снабжены аккумуляторными батареями низкого напряжения (6—24 В), которые работают в буферном режиме.

Агрегат АВЭУ-2 (прежняя марка — АВЭС-0, 1) имеет следующие узлы (рис. 5.26): ветроколесо 1 диаметром 2 м, головка 2, хвост 3, стойка 4 и электрический щиток с аккумуляторной батареей. Стойка головки при­креплена к опорному столбу 5 и растяжками 6, на котором укреплен ры­чаг ручного управления, с помощью которого, тормозя вал генератора, останавливают агрегат.

Ветроколесо имеет две металлические лопасти, поворачивающиеся в подшипниках втулки, закрепленной- на валу генератора. Центробежный регулятор работает по такому же принципу, как 'и агрегат «Беркут». В зависимости от скорости ветра и величины нагрузки частота вращения изменяется в диапазоне от 300 до 800 об/мин.

На стойке, несущей ферму с хвостовым оперением, закреплен генера­тор с возбуждением от постоянных магнитов. В нем расположены трех­фазная неподвижная статорная обмотка и ротор в виде восьмиполюсного постоянного магнита. Они размещены в корпусе из алюминиевого сплава. В зависимости от способа соединения обмоток генератор вырабатывает ток напряжением 26 или 15 В.

Генератор соединен с электрическим щитком трехжильным кабелем, пропущенным сквозь трубу стойки, которая может поворачиваться в

 

Скорость ветра, м/с
Показатели —-------------------------------- 4   5    6     7 8 и выше
Мощность, кВт 0, 8 1, 6  4, 5 7, 8 12 Qnpи H#Ј=50M- 5, 9 11, 3 14, 1 16 Q при H #2 = 100 м - 4, 6  9, 7 12    15

 

Таблица 1

Полезная мощность и подача агрегата «Сокол», м3/чупорном шарикоподшипнике и направляющей втулке. Щиток имеет один-два селеновых выпрямителя, собранных по трехфазной двухполу-периодной схеме, амперметр для контроля работы агрегата, выключатели, предохранитель и зажимы для присоединения нагрузки к аккумулятор­ной батарее (рис. 5.27). Транзисторный преобразователь используется для питания телевизора.

Рис.1.9. Электрическая схема агрегата АВЭУ-2:

/ - ветроэлектроагрегат; 2 — электрощит; 3 - преобразователь; 4 - телевизор; 5 - радиоприемник; 6 - аккумуляторные батареи; 7 - электрическое освещение

Рис. 1.10. Электрический агрегат Д-4 для зарядки аккумуляторных батарей

 

Для предохранения батарей от перезаряда и выкипания электролита предусмотрена релейная автоматика, которая подключа­ет к генератору дополнительную нагрузку при достижении напряжения аккумулятора 15 В и избытке мощности. Этим снижаются напряжение и ток заряда до 0, 5 - 1 А.

Агрегат работает с аккумуляторными батареями 6СТ-128 или ЗСТ-84 напряжением 6, 12 или 24 В.

Агрегат Д-4 представляет интерес как пример весьма прос­того по конструкции и устойчивого в работе устройства для получения электрической энергии. Он имеет ветроколесо с регулятором частоты вра­щения, редуктор, генератор, опору с хвостом, опорный столб с растяж­ками и рычагом механизма ручного пуска и останова, а также электри­ческий щиток. Простейший по конструкции редуктор и генератор постоян­ного тока мощностью 750 Вт составляют головку Колесо и ре­гулятор по принципу действия такие же, как у агрегата «Беркут».

 


ГЛАВА 2


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 57; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь