Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОСНОВНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ОКЕАНСКОЙ ЭНЕРГЕТИКИ



Резкое увеличение цен на топливо, трудности с его полу­чением, сообщения об истощении топливных ресурсов — все эти видимые признаки энергетического кризиса выз­вали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энер­гии Мирового океана.

Естественно, этот интерес особенно велик в странах, не обладающих достаточными собственными топливными ресурсами, т. е. запасами нефти, газа, угля и пр. Напри­мер, в Японии осуществляется национальная программа «Солнечный свет», которая предусматривает к 2000 г. покрытие более 70 % всего энергетического потребления страны за счет новых источников энергии, в том числе — за счет энергии океана. В Англии на исследования в этой области было выделено 13 млн. фунтов стерлингов. Предполагается, что наилучший прин­цип преобразования энергии волн ляжет в основу буду­щих мощных волновых электростанций, способных обес­печить значительную часть (до 30 %) потребности этой страны в электроэнергии. В Норвегии реализуется про­грамма по использованию энергии морских волн; па ис­следования в этой области израсходовано 10 млн. крон. Ведется строительство двух опытных волновых электро­станций, каждая из них будет ежегодно производить около 1, 5 млн. кВт-ч электроэнергии предположительной сто­имостью не более 0, 6 крон за 1 кВт-ч.

В разных видах аккумулирует энергию Мировой океан. Вопрос состоит в том, чтобы найти оптимальные способы ее использования.

По оценкам разных авторов, доступная часть энергии Мирового океана, т. е. та часть, которая может быть практически использована при современном уровне тех­ники преобразования, во много раз превышает уровень современного потребления энергии в мире, который определяется цифрой около 3-1020 Дж в год (44, 8 % от этой цифры покрываются нефтью; 32, 4 — углем; 20 — газом; 2, 8 % — энергией, вырабатываемой гидро- и атомными станциями). Больше всего в океане тепловой энергии, по­скольку океан — гигантский тепловой аккумулятор энер­гии Солнца.

Последнее десятилетие характеризуется определен­ными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (OTEG — начальные буквы английских слов Ocean Thermal Energy Conversion, т. е. преобразование тепловой энергии оке­ана — речь идет о преобразовании в электрическую энер­гию). Установка мини-ОТЕС смогла отдать в электриче­скую сеть 12—15 кВт, а на собственные нужды потре­била около 35 кВт. Опыт, полученный при разработке и опытной эксплуатации установок мини-ОТЕС и ОТЕС-1, позволил приступить к проектированию тепловых океан­ских станций на сотни мегаватт.

Запасы энергии градиента солености, или осмоса (греч. «толчок», «давление»), по некоторым оценкам, не усту­пают тепловой энергии океана. Осмотическая энергия — наиболее «таинственный», т. е. наименее очевидный вид энергии океана, поскольку наши органы чувств эту энер­гию ие воспринимают.

Энергия течений Мирового океана по величине близка к энергии, получаемой от сжигания всех видов топлива на Земле в течение года (примерно 1020 Дж). Начаты ра­боты по использованию энергии Гольфстрима, самого мощного течения в Мировом океане. Предполагается использовать около 1 % его энергии. Авторы проекта считают, что эта цифра не должна заметно отразиться на общем балансе энергии течения.

По оценке Комиссии по экономии энергии и энерго­ресурсов Мировой энергетической конференции (МИРЭК), сегодня важным энергетическим ресурсом является био­масса, так как дает 10 % мирового потребления первичной энергии. Ожидается, что она будет играть такую же важ­ную роль в будущем обеспечении энергией при выработке технологического тепла и производства синтетических топлив. Синтетическое топливо из биомассы можно сжи­гать на электростанциях, использовать на транспорте или в промышленности. Часть биомассы доставляет Ми­ровой океан, предполагается, что доля океана в поставке биомассы будет возрастать. Рассматривается создание энергетических плантаций, для которых в океане имеются очень широкие возможности. По оптимистическим оцен­кам, углеводородное топливо из водорослей может произво­диться по цене, меньшей мировой рыночной цены на нефть.

Более трети поверхности Мирового океана (130 млн. км'" ) имеет дно, грунт которою пригоден для выращивания быстрорастущих водорослей, из которых можно легко получить горючие газы метан и этан, широко исполь­зуемые для самых разных целей. В настоящее время обра­щено внимание на выращивание бурой водоросли — весьма урожайной культуры (от 600 до 1000 т с гектара в сыром весе). Бурая водоросль не имеет корней, поэтому для нее не очень важен состав грунта. Растет она в толще морской воды, но вода должна быть достаточно богата питатель­ными солями и должно быть много солнца.

Имеются в Мировом океане и другие источники энер­гии. Например, обсуждался вопрос об использовании сероводорода — горючего газа с неплохой калорийностью. Сероводородом очень богато Черное море, и к тому же его количество там непрерывно возрастает. Есть сероводород и в других районах Мирового океана — общие запасы его очень велики (недостаток этого вида топлива — непри­ятный запах, но, возможно, будет найден способ его устранения).

Весьма перспективный вид энергии Мирового океана — это энергия волн. В океане много видов воли. Однако с точки зрения выработки электрической энергии заслу­живают внимания лишь три их типа: приливные волны, ветровые волны и зыбь. Ветровые волны обладают боль­шой разрушительной силой, т. е. несут значительную энер­гию. Несколько миллионов штормов ежегодно случается в Мировом океане. По подсчетам академика Н. В. Мель­никова, 1 км2 водной поверхности с волнами высотой около 5 м обладает мощностью около 3 млн. кВт. А штор­мовая погода может охватить площадь в несколько тысяч квадратных километров. Соответственно волновая мощ­ность Мирового океана оценивается цифрой около 3 млрд. кВт! Запасы энергии ветровых волн и зыби огромны, но степень разработанности проблемы ее использования пока недостаточна, лишь в последнее десятилетие были сде­ланы некоторые шаги в деле практического использования энергии ветровых волн и зыби — для выработки электри­ческой энергии Значительно раньше началось использование энер­гии приливных волн, отличающихся четкой регуляр­ностью: два раза в сутки в определенное время появля­ются приливные волны заранее известной высоты. Эти свойства — строгая периодичность и определенная вы­сота — позволили людям очень рано научиться использо вать их энергию: уже в XI в. строили мельницы, работа­ющие за счет энергии прилива (например, во Франции в г. Шербуре до сих пор действует старая мельница, ис­пользующая энергию приливных волн). В наши дни при­ливные электростанции — самые мощные среди других волновых электростанций, но их можно построить не на любом участке побережья (и, как правило, не там, где особенно нужна энергия). У нас в стране, например, при­рода распорядилась так, что самые мощные приливы име­ются вдали от индустриальных центров или районов с большим потреблением энергии. В Советском Союзе самые мощные приливы — у берегов Камчатки, где общая энергия приливных волн равна примерно 1019 Дж в год.

Ветровые волны и зыбь хороши тем, что для использо­вания их энергии не надо искать особых мест с благо­приятными географическими условиями, как для при­ливных волн. Они бывают на любой акватории — был бы ветер да пространство для разгона. Чтобы утилизировать энергию ветровых волн (и зыби), не надо строить больших и дорогих плотин, что также очень важное преимущество. Именно поэтому в разных странах ведутся исследования по выбору наилучших способов преобразования энергии ветровых волн и зыби. Созданы волноэнергетические уста­новки разных мощностей, использующие различные фи­зические принципы для преобразования энергии волн.

Почти полвека назад академик В. В. Шулейкин от­метил три основных направления, по которым шла кон­структорская мысль в решепии проблемы использования энергии поверхностных волн. На одно из первых мест он ставил использование энергии качки: движение по­плавка передается поршням насосов. Если учесть, что поплавок может иметь массу в сотни тонн, а размах коле­бательного движения принять порядка нескольких мет­ров, то, очевидно, таким путем может быть получена весьма значительная мощность. Современные английские проекты использования волновой энергии («утка» Солтера и «плот» Коккереля) основываются именно на этом прин­ципе. Второй способ — использование ударного давле­ния: волны ударяют в подвижную деталь волновой ма­шины и отдают ей свою кинетическую энергию. Этот принцип с успехом применялся в конце прошлого столе­тия в установках, использовавших энергию волн для на­качки воды. Не потерял он своего значения и в наши дни (правда, для маломощных установок). Третий путь — использование гидравлического тарана. По этому спо­собу была построена экспериментальная установка на станции Морского гидрофизического института АН СССР в Крыму. Ныне эта идея в большем масштабе реализу­ется на острове Маврикий и в других местах.

Различные виды энергии океана американский спе­циалист Д. Д. Айзеке предложил условно оценивать одной мерой — в метрах водяного столба 2. Эта величина на­зывается им плотностью потока, она характеризует сте­пень концентрации данного вида энергии. С помощью этого понятия удобно сравнивать между собой различные виды энергии в океане. Например, для теплового гради­ента (т. е. разности температур между теплым и холодным слоями) 20 °С плотность потока составляет 570 м водя­ного столба, ее напор — как в грандиозном водохрани­лище, подпертом плотиной высотой более полукилометра. А для градиента 12 °С плотность потока равна 210 м. Обе цифры (210 и 570 м) рассчитаны с учетом КПД тепло­вой машины, работающей по циклу Карно. Такую плот­ность потока в океане имеет еще только энергия градиента солености (осмоса) — 240 м. Другие виды энергии океана имеют значительно меньшие значения плотности потока. Так, для ветровых волн она составляет 1, 5 м, а для океан­ских течений —лишь 0, 05 м. Но, как сказал Д. Д. Ай­зеке, еще остаются неоткрытыми совершенно новые прин­ципы, простые и сложные, обнаружив которые, можно использовать ресурсы океана, связанные с энергией, для блага человечества.

 

ПРЕОБРАЗОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 43; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь