Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет и конструирование главной балки.



Вариант 1 – пролет балки настила 8 м, шаг балок 2 м.

Рис. 1

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 1).

Нормативное значение нагрузки, действующей на балку настила:

Где a – шаг балок настила;

B – пролет балки настила.

Расчетное значение нагрузки, действующей на балку настила:

;

Где  и  - коэффициенты надежности по нагрузке для временной нагрузки и железобетонного настила (СНиП 2.01.07-85*).

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Расчет на прочность разрезных балок сплошного сечения из стали с пределом текучести до 5400 кгс/см2, несущих статическую нагрузку, при изгибе в одной из главных плоскостей выполняют по формуле:

Где с1 – коэффициент, учитывающий развитие пластических деформаций в элементах конструкций и зависящий от формы сечения;

 - расчетное сопротивление балки по пределу текучести;

 – коэффициент условий работы для сплошных прокатных балок, несущих статическую нагрузку (СП 53-102-2004 табл. 1).

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 45 со следующими геометрическими характеристиками:

Wx=1231 см3;

Ix=27696 см4;

Sx=708 см3;

Р=66.5 кг/м;

d=0.9 см;

b=16 см;

h=45 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Rs – расчетное сопротивление стали сдвигу Rs=0.58∙Ry=0.58∙2750=1595 кгс/см2 (СП 53-102-2004 табл. 2);

где Sx – статический момент сдвигаемой части сечения относительно нейтральной оси;

Ix – момент инерции кручения балки (Ix= Sx∙h∙d);

d – толщина стенки балки.

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при первом варианте компоновки балочной клетки.

Расход металла на 1 м2:

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.03325 т∙10000 р+0.1 м3∙1000=432.5 р.

Вариант 2 - пролет балки настила 8 м, шаг балок 1.5 м.

Рис. 2

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 2).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 40 со следующими геометрическими характеристиками:

Wx=953 см3;

Ix=19062 см4;

Sx=545 см3;

Р=57 кг/м;

d=0.83 см;

b=15.5 см;

h=40 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при втором варианте компоновки балочной клетки.

Расход металла на 1 м2:

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.038 т∙10000 р+0.1 м3∙1000=480 р.

1.3. Вариант 3 (усложненная компоновка) – пролет балок настила 3 м, шаг балок настила 1.6 м, пролет вспомогательных балок 8 м, шаг вспомогательных балок 3 м.

Рис. 3

Расчет балки настила.

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 3).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 18 со следующими геометрическими характеристиками:

Wx=143 см3;

Ix=1290 см4;

Sx=81.4 см3;

Р=18.4 кг/м;

d=0.51 см;

b=9 см;

h=18 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=3м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Расчет вспомогательной балки.

Рис. 4

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Нагрузка от балок настила:

где А – шаг колонн в продольном направлении;

В – шаг колонн в поперечном направлении;

Р – нагрузка от 1 м балки настила.

Выделяем грузовую площадь на 1 вспомогательную балку (рис. 3).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Где - коэффициент надежности по нагрузке для металлических конструкций (СНиП 2.01.07-85*).

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 50 со следующими геометрическими характеристиками:

Wx=1598 см3;

Ix=39727 см4;

Sx=919 см3;

Р=78.5 кг/м;

d=1 см;

b=17 см;

h=50 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при третьем варианте компоновки балочной клетки.

Расход металла на 1 м2:

Где Р1 и Р2 – вес 1 метра профиля балки настила и вспомогательной балки.

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.0377 т∙10000 р+0.1 м3∙1000=477 р.

Таким образом наиболее экономичным является 1 вариант компоновки балочной клетки.

 


 


Размеры ребер жесткости.

Укрепляем стенку парными симметричными ребрами. Ширина выступающей части ребра:

Толщина ребра:

Принимаем th=8 мм.

Расчет поясных швов.

Соединение поясных листов главной балки со стенкой осуществляется поясными швами. При изгибе балки — это соединение предотвращает сдвиг поясов относительно стенки балки, который имел бы место при раздельной самостоятельной работе элементов балки на изгиб. Расчет соединений ведется на силу сдвига пояса относительно стенки. В сварных балках сдвигающая сила Т, приходящаяся на 1 см длины балки, определяется через касательные напряжения:

Где Sf1 – статический момент пояса относительно нейтральной оси.

Сварные швы, соединяющие стенки и пояса составных двутавров балок, следует рассчитывать согласно табл. 37 СНиП ∥-23-81* «Стальные конструкции». В случае неподвижной нагрузки двусторонние угловые швы рассчитываются по формулам:

Где γwf и γwz – коэффициенты условий работы шва равные 1;

bf и bz – коэффициенты глубины проплавления угловых швов, принимаемые при сварке элементов из стали: с пределом текучести до 530 МПа (5400 кгс/см2) – по табл. 34 СНиП ∥-23-81* «Стальные конструкции»;

Rwf и Rwz – расчетное сопротивление по условному срезу шва и по срезу металла на границе сплавления шва (табл. Г2 СП 53-102-2004»)

Отсюда получим:

- Высота катета шва из условия прочности металла шва:

Высота катета шва из условия прочности металла на границе сплавления:

В соответствии с конструктивными требованиями к сварным соединениям катеты угловых швов следует принимать по расчету, но не менее указанных в табл. 38 СНиП ∥-23-81* «Стальные конструкции», поэтому принимаем значение кf=6 мм как минимально допустимое при толщине пояса tf=17-22 мм, что больше получившегося по расчету кf=1.8 мм.

Расчет опорного ребра.

При высоте выступающей части опорного ребра а≤1.5t напряжение в нижних торцах при действии опорной реакции не должно превышать расчетного сопротивления смятию.

Где Run – нормативное сопротивление;

γm – коэффициент надежности по материалу.

Из условия смятия определяется необходимая площадь поперечного сечения опорного ребра. Принимаем, а≤1.5∙t=1.5∙1.6=2.4 см. Принимаем, а=2 см. Требуемая площадь поперечного сечения опорного ребра равна:

Принимаем ребро 250*16 мм. А=25∙1.6=40 см2˃Атр=39.2 см2.

Участок стенки балки составного сечения над опорой при укреплении его ребрами жесткости следует рассчитывать на продольный изгиб из плоскости как стойку, нагруженную опорной реакцией. В расчетное сечение этой стойки следует включать сечение опорного ребра и полосу стенки шириной  с каждой стороны ребра. Расчетную длину стойки следует принимать равной высоте стенки.

Расчет на устойчивость:

Где φ – коэффициент продольного изгиба, определяемый по табл. 72 СНиП ∥-23-81* «Стальные конструкции», в зависимости от гибкости λ.

Где lef – расчетная длина стойки;

Ix – радиус инерции сечения.

Геометрические характеристики сечения, рассчитываемого на продольный изгиб, определяются для полосы стенки шириной:

Определим геометрические характеристики сечения:

 

        Рис. 6

За расчетную длину lef=180см принимается высота стенки на опоре. Гибкость будет равна:

Для λ=31.91 и Ry=2750 кгс/см2 коэффициент продольного изгиба φ=0.916.

Условие выполняется, т.е. устойчивость участка стенки главной балки над опорой обеспечена. Рассчитываем прикрепление опорного ребра к стенке балки двусторонними швами с помощью полуавтоматической сварки проволокой Св-08А по формуле. Предварительно находим параметры сварных швов и определяем минимальное значение β∙Rу:

Rwf=1800 кгс/см2;

Rwz=1650 кгс/см2;

βf=0.9;

βz=1.05;

Определяем катет сварных швов по формуле:

Принимаем значение катета сварного шва кf=8 мм, что больше кf,min=6 мм.

Проверяем длину расчетной части шва:

Ребро привариваем к стенке по всей высоте сплошными швами.

Расчет монтажного стыка.

Монтажные стыки выполняются при монтаже на строительной площадке, они необходимы тогда, когда масса или размеры балки не позволяют перевести и смонтировать ее целиком. Расположение их должно предусматривать членение балки на отдельные отправочные элементы, по возможности одинаковые, удовлетворяющие требованиям транспортирования и монтажа наиболее распространенными средствами. Монтажный стык должен быть удален от места передачи сосредоточенных нагрузок. В соответствие с перечисленными выше требованиями выполним монтажный стык главной балки на расстоянии 8 м от опоры.

Определяем внутренние усилия на расстоянии 8 м от опоры:

 

Изгибающий момент, воспринимаемый стенкой главной балки:

Где Iw – момент инерции стенки главной балки;

Ix – момент инерции всего сечения главной балки.

Усилие, воспринимаемое поясом главной балки:

Сварной стык.

Поскольку при монтаже автоматическая сварка и сложные способы контроля затруднены, пояса свариваются косым швом, угол наклона оси шва к оси пояса φ=300. Расчет сварных стыковых соединений на центральное растяжение или сжатие:

Где t – наименьшая толщина соединяемых элементов; lw – расчетная длина шва, определяемая с учетом применения обычных способов контроля качества шва.

Rwy – расчетное сопротивление по пределу текучести стыкового сварного шва;

Условие не выполняется, прочность сварного монтажного стыка пояса главной балки не обеспечена. Необходимо либо увеличить длину шва, либо рассчитать болтовой стык.

Болтовой стык пояса.

Для расчета принимаем следующее соединение: стык поясов перекрывается тремя накладками – одной сверху сечением 45*2 см и двумя снизу сечением 18*2 см, в качестве болтов используются высокопрочные болты диаметром d=24 мм (Аbn=3.52 см2). Перед постановкой накладок поверхности соединяемых элементов обрабатываются дробеструйным аппаратом.

Рис. 7

Расчетное усилие, которое может быть воспринято каждой поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом, следует определять по формуле:

Где Rbh=0.7Rbun=0.7∙11000=7700 кгс/см2 – расчетное сопротивление высокопрочного болта растяжению;

γb – коэффициент условий работы соединения, зависящий от количества болтов, необходимых для восприятия расчетного усилия γb=0.9 при 5≤n≤10;

Аbn – площадь сечения болта нетто, определяемая по табл. 62 СНиП ∥-23-81* «Стальные конструкции»;

Μ и γh – коэффициенты трения и надежности, принимаемые по табл. 36 СНиП ∥-23-81* «Стальные конструкции».

Количество высокопрочных болтов в соединении при действии продольной силы следует определять по формуле:

Где к - количество поверхностей трения соединяемых элементов.

Принимаем 10 болтов d=24 мм, устанавливаемых в отверстия d=26 мм. Указанное количество болтов устанавливается по каждую сторону от центра стыка. Проверим ослабление пояса по крайнему ряду болтов. Пояс ослаблен двумя отверстиями диаметром 26 мм по краю стыка. Площадь сечения нетто:

Ослабление пояса можно не учитывать.

В ослабленных отверстиями сечениях пояса для крайнего ряда болтов должно выполняться условие:

Где Аf – площадь пояса; ni – число рабочих болтоконтактов в проверяемом сечении; n – число рабочих болтоконтактов в соединении, здесь число рабочих болтоконтактов равно числу болтов, умноженному на число поверхностей трения.

Условие выполнено.

Стенку перекрываем двумя вертикальными накладками сечением 42*170*1.2 см.

Принимаем расстояние между крайними рядами болтов аmax=160 см.

Изгибающий момент, приходящийся на стенку, уравновешивается суммой внутренних пар усилий, действующих на болты, расположенные на стыковой полунакладке симметрично относительно нейтральной оси балки:

Где m – число вертикальных рядов болтов в одной полунакладке; аi – плечо пар усилий в равноудаленных от нейтральной оси болтах.

Все усилия Ni можно выразить через N1 через подобие треугольников.

Поскольку N1=Nmax и а1max, расчет монтажного стыка главной балки можно свести к формуле:

Где n – количество болтов на полунакладке.

В случае соединения одним болтом 3-х листов каждый болт имеет две поверхности трения, поэтому усилие, которое может быть воспринято одним болтом, равно:

Условие выполняется, то есть несущая способность одного болта больше того усилия, которое необходимо воспринять болту крайнего ряда (максимальное усилие, возникающее в монтажном стыке стенки).

Подбор сечения стержня.

Рис. 10

При расчете центрально-сжатых элементов необходимо знать расчетную длину. Для этого следует установить расчетную схему колонны. При опирании главной балки на колонну сверху, колонна рассматривается как шарнирно закрепленная вверху. Расчетная длина колонны сквозного сечения:

Для колонны применяем сталь С235 с Ry=2350 кгс/см2 при толщине фасонного проката до 20 мм. Задаемся гибкостью колонны λ=40 (N˃200000 кгс), коэффициент продольного изгиба φ=0.894. Требуемую площадь сечения колонны определяем по формуле:

Данному значению площади соответствует сечение из 2-х двутавров №40 по ГОСТ 8239-89 с площадью А=2∙72.6=145.2 см2 и радиусом инерции ix=16.2 см, iy=3.03 см.

Гибкость колонны:

Которой соответствует φ=0.920.

Проверяем действующее напряжение:

Условие выполняется, то есть подобранное сечение удовлетворяет условию устойчивости центрально сжатого элемента относительно оси Х.

После подбора сечения стержня колонны по устойчивости относительно материальной оси Х необходимо определить расстояние между ветвями колонны из условия равноустойчивости. Приближенно определяем требуемую гибкость относительно свободной оси (для колонны с раскосной решеткой λyx). Задаемся решеткой из равнополочных уголков 50*5 мм в двух плоскостях Аd=2∙4.8=9.6 см2. Гибкость определяем по формуле:

Α1 – коэффициент, определяемый по табл. 8.1 Беленя Е.И. «Металлические конструкции».

Гибкости λy соответствует значение радиуса инерции

Расстояние между ветвями:

Полученное значение должно быть не менее ширины полки двутавра плюс зазор, необходимый для оправки внутренних поверхностей стержня. В данном случае bтр=155+100=255 мм. Таким образом принимаем расстояние между ветвями колонны 470 мм.

Геометрические характеристики составного сечения колонны:

Этому значению приведенной гибкости соответствует значение продольного изгиба φу=0.924. Так как это значение больше φх, проверка устойчивости относительно оси Y не нужна.

Расчет оголовка колонны.

Конструкция оголовка колонны должна обеспечить принятое ранее шарнирное крепление балки на опорах. Самым простым способом реализации шарнирного опирания является постановка балки на колонну сверху, что обеспечивает простоту монтажа. Расчетным элементом при таком опирании является ребро, поддерживающее плиту оголовка, толщину которой назначают конструктивно в пределах 20-25 мм. Толщину ребра оголовка определяют из условия сопротивления на смятие под полным опорным давлением:

Где lр=b+2∙tпл=25+2∙2.5=30 см - длина участка смятия (b – ширина опорного ребра, tпл – толщина плиты оголовка);

N – опорное давление главной балки;

Rр – расчетное сопротивление смятию, принимаемое равным Run;

Run=3700 кгс/см2 по табл. 51*СНиП ∥-23-81 «Стальные конструкции», при листовом прокате стали С235 толщиной 20 мм.

По ГОСТ 82-70 назначаем 28 мм.

Швы, крепящие ребро к плите должны быть рассчитаны на действие той же силы N. Задаемся катетом шва кf,min=7 мм≤kf=10 мм≤ кf,max=1.2∙t=1.2∙8.4=10.08 мм. Определим необходимую высоту швов из условия прочности по металлу шва:

из условия прочности металла на границе сплавления:

Назначим высоту ребра из условий размещения сварных швов 66 см, при этом следует иметь ввиду, что эти швы по отношению к линии действия усилия N являются фланговыми, а их длины назначаются не более:

85∙βf∙kf=85∙0.7∙1=59.5 см

Назначаем высоту опорного ребра 59 см.

Расчет базы колонны.

Колонна имеет жесткое крепление к фундаменту. Принимаем диаметр анкерных болтов 30 мм. Фундамент проектируется из бетона В20 с расчетным сопротивлением сжатию Rb=115 кгс/см2.

Определяем требуемую площадь плиты из условия обеспечения прочности фундамента:

Ширина опорной плиты базы колонны назначается конструктивно:

Где h – высота ветви колонны;

а – свес плиты, принимаемый ориентировочно равным 5-10 см.

Тогда необходимая длина плиты:

Исходя из размеров колонны и удобства размещения анкерных болтов назначаем плиту 56*70 см.

Расчетной нагрузкой на плиту является давление, равное напряжению в фундаменте:

Погонная нагрузка на участок плиты равна:

Определим изгибающий момент на различных участках в плите. Расчет участка плиты следует производить как консоли, при, а/h˂0.5:

Если, а/h˃0.5, то правильнее рассматривать плиту как пластину при опирании на три канта:

При опирании на четыре канта:

Где коэффициент β принят по таблице 8.7 Беленя Е.И. «Металлические конструкции»;

α - принят по таблице 8.6 Беленя Е.И. «Металлические конструкции»;

Участок 1 работает как консольная балка с пролетом а=6.8 см.

Участок 2 работает как пластина, опертая на три стороны, однако при а/h=0.27˂0.5 расчет ведется как для консольного участка:

Участок 3 работает как пластина, опертая на четыре канта. При b/а=46.17/19.5=2.4 по таблице 8.6 Е.И. Беленя «Металлические конструкции» принимаем α=0.125.

Требуемую толщину плиты определим по максимальному моменту:

Принимаем толщину плиты 3.6 см.

Высота траверсы определяется из условия размещения сварных швов, крепящих ее к стержню колонны. Необходимая длина швов при высоте катета кf=10 мм (толщину траверсы назначаем равной 12 мм).

- по металлу шва:

из условия прочности металла на границе сплавления:

По наибольшему значению назначаем высоту траверсы 60 см что меньше максимально допустимой 85∙кf=85 см.

Проверка прочности на изгиб и срез.

Изгибающий момент в месте прикрепления траверсы к колонне:

Где qтр – погонная нагрузка на траверсу:

Изгибающий момент в середине траверсы:

Поперечная сила в траверсе:

Момент инерции сечения траверсы:

Прочность траверсы на изгиб и срез проверим по формулам:

Прочность траверсы на изгиб и срез обеспечена.

 

 


 


Библиографический список.

1. СНиП ∥-23-81*. Нормы проектирования. Стальные конструкции. / Госстрой СССР.-Москва: Стройиздат, 1988 год.

2. СНиП 2.01.07-85. Нормы проектирования. Нагрузки и воздействия. / Госстрой СССР.- Москва: Стройиздат, 1987 год.

3. ГОСТ 19903-74. Прокат листовой горячекатаный/ Госстрой СССР.- Москва: Стройиздат, 1974 год.

4. Металлические конструкции. Общий курс./ Под общей редакцией Е.И. Беленя. – Москва: Стройиздат, 1985 год.

 

Вариант 1 – пролет балки настила 8 м, шаг балок 2 м.

Рис. 1

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 1).

Нормативное значение нагрузки, действующей на балку настила:

Где a – шаг балок настила;

B – пролет балки настила.

Расчетное значение нагрузки, действующей на балку настила:

;

Где  и  - коэффициенты надежности по нагрузке для временной нагрузки и железобетонного настила (СНиП 2.01.07-85*).

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Расчет на прочность разрезных балок сплошного сечения из стали с пределом текучести до 5400 кгс/см2, несущих статическую нагрузку, при изгибе в одной из главных плоскостей выполняют по формуле:

Где с1 – коэффициент, учитывающий развитие пластических деформаций в элементах конструкций и зависящий от формы сечения;

 - расчетное сопротивление балки по пределу текучести;

 – коэффициент условий работы для сплошных прокатных балок, несущих статическую нагрузку (СП 53-102-2004 табл. 1).

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 45 со следующими геометрическими характеристиками:

Wx=1231 см3;

Ix=27696 см4;

Sx=708 см3;

Р=66.5 кг/м;

d=0.9 см;

b=16 см;

h=45 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Rs – расчетное сопротивление стали сдвигу Rs=0.58∙Ry=0.58∙2750=1595 кгс/см2 (СП 53-102-2004 табл. 2);

где Sx – статический момент сдвигаемой части сечения относительно нейтральной оси;

Ix – момент инерции кручения балки (Ix= Sx∙h∙d);

d – толщина стенки балки.

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при первом варианте компоновки балочной клетки.

Расход металла на 1 м2:

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.03325 т∙10000 р+0.1 м3∙1000=432.5 р.

Вариант 2 - пролет балки настила 8 м, шаг балок 1.5 м.

Рис. 2

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 2).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 40 со следующими геометрическими характеристиками:

Wx=953 см3;

Ix=19062 см4;

Sx=545 см3;

Р=57 кг/м;

d=0.83 см;

b=15.5 см;

h=40 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при втором варианте компоновки балочной клетки.

Расход металла на 1 м2:

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.038 т∙10000 р+0.1 м3∙1000=480 р.

1.3. Вариант 3 (усложненная компоновка) – пролет балок настила 3 м, шаг балок настила 1.6 м, пролет вспомогательных балок 8 м, шаг вспомогательных балок 3 м.

Рис. 3

Расчет балки настила.

Принимаем железобетонный настил толщиной tн=0.1 м и плотностью железобетона ρ=2500 кг/ .

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Выделяем грузовую площадь на 1 балку настила (рис. 3).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 18 со следующими геометрическими характеристиками:

Wx=143 см3;

Ix=1290 см4;

Sx=81.4 см3;

Р=18.4 кг/м;

d=0.51 см;

b=9 см;

h=18 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=3м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Расчет вспомогательной балки.

Рис. 4

Временная нагрузка задана:

Нагрузка от собственного веса железобетонного настила составит:

Нагрузка от балок настила:

где А – шаг колонн в продольном направлении;

В – шаг колонн в поперечном направлении;

Р – нагрузка от 1 м балки настила.

Выделяем грузовую площадь на 1 вспомогательную балку (рис. 3).

Нормативное значение нагрузки, действующей на балку настила:

Расчетное значение нагрузки, действующей на балку настила:

Где - коэффициент надежности по нагрузке для металлических конструкций (СНиП 2.01.07-85*).

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Требуемый момент сопротивления поперечного сечения балки равен:

По сортаменту прокатных профилей (СТО АСЧМ 20-93) выбираем двутавр № 50 со следующими геометрическими характеристиками:

Wx=1598 см3;

Ix=39727 см4;

Sx=919 см3;

Р=78.5 кг/м;

d=1 см;

b=17 см;

h=50 см.

Значения касательных напряжений в сечении изгибаемого элемента должны удовлетворять условию:

Условие выполняется, следовательно, опорные сечения балок настила удовлетворяют условию прочности по касательным напряжениям.

Расчет по 2 группе предельных состояний для изгибаемых элементов заключается в определении вертикального относительного прогиба и сравнение его с нормируемым.

Относительный прогиб однопролетной балки, нагруженной равномерно распределенной нагрузкой:

По таблице 19 СНиП 2.01.07-85* в зависимости от пролета определяем нормируемый прогиб. Для пролета l=8м:

Условие выполняется, то есть сечение балки настила удовлетворяет требованиям жесткости.

Подсчитаем расход и стоимость материалов при третьем варианте компоновки балочной клетки.

Расход металла на 1 м2:

Где Р1 и Р2 – вес 1 метра профиля балки настила и вспомогательной балки.

Расход железобетона 1 м2∙0.1 м=0.1 м3.

Стоимость 1 м2 настила: С=0.0377 т∙10000 р+0.1 м3∙1000=477 р.

Таким образом наиболее экономичным является 1 вариант компоновки балочной клетки.

 


 


Расчет и конструирование главной балки.

Балки настила опираются на главные балки равномерно с шагом 2 метра, пролет главных балок составляет 18 м. Таким образом, на главную балку будут действовать 9 сосредоточенных сил, примем их как равномерно распределенную нагрузку.

Рис. 5

Нагрузка, действующая на главную балку будет включать в себя:

· Полезную нагрузку;

· Собственный вес настила;

· Собственный вес балок настила;

· Собственный вес главной балки (1-2 % от нагрузки на нее).

Нагрузка от балок настила:

Вес главной балки:

Нормативное значение нагрузки, действующей на главную балку:

Расчетное значение нагрузки, действующей на главную балку:

Максимальный изгибающий момент равен:

Максимальная поперечная сила:

Внутренние усилия, возникающие в главной балке настолько значительны, что использование прокатных профилей исключено. Поэтому главная балка проектируется составной. Как правило, составные балки проектируются сварными, а их сечение напоминает сечение прокатных двутавров: один вертикальный лист стали образует стенку двутавра, два горизонтальных листа образуют его полки.


Поделиться:



Последнее изменение этой страницы: 2019-06-10; Просмотров: 146; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.415 с.)
Главная | Случайная страница | Обратная связь