Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Звездные корабли на антивеществе



Технологии пятой волны (к которым относятся двигатели на антивеществе (антиматерии), световые паруса, термоядерные двигатели и нанокорабли), возможно, откроют нам потрясающие перспективы. Двигатели на антивеществе, которыми снабжены космические корабли в сериале «Звездный путь», когда-нибудь могут стать реальностью. Они будут использовать величайший источник энергии во Вселенной — прямое превращение материи в энергию при аннигиляции вещества и антивещества[6].

Антивещество (антиматерия) представляет собой противоположность веществу (материи), в частности, в том смысле, что частицы и античастицы обладают противоположным электрическим зарядом. Антиэлектрон имеет положительный заряд, антипротон — отрицательный. В старших классах школы я пытался исследовать антивещество, помещая капсулу с натрием-22, который испускает антиэлектроны, в конденсационную камеру и фотографируя красивые треки, оставленные антивеществом. Затем я построил бетатрон — ускоритель частиц на 2, 3 млн электронвольт — в надежде исследовать свойства антивещества.

Когда вещество и антивещество соприкасаются, они аннигилируют, превращаясь в чистую энергию, так что можно сказать, что эта реакция высвобождает энергию со 100%-ной эффективностью. Для сравнения: эффективность ядерного оружия составляет всего 1%; большая часть энергии, содержащейся в водородной бомбе, теряется напрасно.

По идее, конструкция ракеты на антивеществе должна быть довольно простой. Антивещество в ней должно храниться в безопасных контейнерах и постепенно тонкой струйкой подаваться в камеру. Там оно должно соединяться с обычным веществом, взрываться и давать вспышку гамма- и рентгеновского излучения. Высвободившаяся при этом энергия будет выбрасываться через отверстие в реактивное сопло, создавая тягу.

Как отметил Джеймс Бенфорд, ракеты на антивеществе — любимая идея поклонников научной фантастики, но с их строительством могут появиться серьезные проблемы. Во-первых, антивещество хоть и возникает в результате естественных процессов, но лишь в относительно небольших количествах, так что нам пришлось бы производить его в больших количествах для использования в двигателях. Первый атом антиводорода, в котором антиэлектрон обращается вокруг антипротона, был получен в 1995 г. в Европейской организации ядерных исследований (ЦЕРН) в Женеве. Для этого пучок обычных протонов был направлен на мишень из обычного вещества. В результате столкновений было получено несколько частиц-антипротонов. Мощнейшие магнитные поля отделили протоны от антипротонов, разогнав их в противоположных направлениях. Затем антипротоны замедлили, поместили в магнитную ловушку и там соединили с антиэлектронами, чтобы получился антиводород. В 2016 г. физики ЦЕРН, получив антиводород, проанализировали окружающие антипротон антиэлектронные оболочки. Как и ожидалось, обнаружилось точное соответствие между энергетическими уровнями антиводорода и обычного водорода.

В ЦЕРН объявили: «Если бы мы сумели собрать всю антиматерию, которую когда-либо получали в ЦЕРН, и аннигилировать его с материей, мы получили бы достаточно энергии, чтобы питать обычную электрическую лампочку в течение нескольких минут». Для ракеты потребуется гораздо больше антивещества. К тому же антивещество — самая дорогая форма материи в мире. В сегодняшних ценах 1 г антивещества обошелся бы примерно в $70 трлн. Его можно получить (в очень маленьких количествах) только при помощи ускорителей частиц, строительство и эксплуатация которых обходится чрезвычайно дорого. Сооружение Большого адронного коллайдера (БАК) в ЦЕРН — самого мощного ускорителя в мире — стоило более $10 млрд, но он может выдать лишь очень тонкий пучок антивещества. Попытка собрать его в количестве, достаточном для заправки космического корабля, обанкротила бы Соединенные Штаты.

Гигантские современные машины для сталкивания атомов универсальны и используются исключительно как исследовательские инструменты — для производства антивещества они совершенно неэффективны. Частичным решением этой проблемы могла бы стать организация специальных заводов для его поточного производства. В этом случае, как считает Харольд Герриш из НАСА, стоимость антивещества могла бы снизиться до $5 млрд за 1 г.

Хранение антивещества также представляет проблему и обходится недешево. Если поместить антивещество в бутылку, оно рано или поздно соприкоснется со стенками бутылки — и аннигилирует вместе с контейнером. Для правильного его хранения потребуются ловушки Пеннинга. В них магнитное поле будет удерживать атомы антивещества в подвешенном состоянии, не давая соприкоснуться с сосудом.

В научной фантастике вопросы стоимости и хранения иногда решают, вовремя осваивая какой-нибудь антиастероид, источник дешевого антивещества. Но этот эффектный сценарий не отменяет непростой вопрос: откуда вообще берется антивещество?

Во Вселенной мы повсюду видим вещество, а не антивещество. Мы это точно знаем, потому что столкновение одного электрона с антиэлектроном высвобождает как минимум 1, 02 млн электронвольт энергии. Это точный индикатор столкновения с антивеществом — что-то вроде отпечатка пальца. Однако, исследуя Вселенную, мы почти нигде не встречаем излучения такого типа. Большая часть всего, что мы видим вокруг, состоит из того же обычного вещества, что и мы с вами.

Физики считают, что в момент Большого взрыва Вселенная была абсолютно симметрична и количество вещества и антивещества в ней было одинаково. В этой ситуации аннигиляция того и другого была бы идеальной и полной, а во Вселенной в результате осталось бы одно только излучение. Однако мы существуем и состоим из вещества, которого вообще не должно было остаться. Само наше существование бросает вызов современной физике.

Мы пока не сумели понять, почему вещества во Вселенной больше, чем антивещества. Лишь одна десятимиллиардная часть вещества, изначально присутствовавшего во Вселенной, уцелела после Большого взрыва, и мы — часть этого вещества. Основная теория исходит из того, что идеальное равновесие и симметрия между веществом и антивеществом в ходе Большого взрыва были нарушены, но мы не знаем, что послужило тому причиной. Физика, который сумеет разрешить эту загадку, ждет Нобелевская премия.

Двигатели на антивеществе входят в короткий список приоритетных направлений для всех, кто хочет построить космический корабль. Но свойства антивещества до сих пор почти не исследованы. Неизвестно, к примеру, падает оно вниз или вверх. Современная физика предсказывает, что антивещество должно падать вниз, как и обычное вещество. Если это так, то антигравитация, по всей видимости, невозможна. Однако попытки исследовать гравитационные свойства антивещества определенного ответа пока не дали. А с учетом стоимости любых исследований в этой области и ограниченности наших знаний ракеты на антивеществе в ближайшие 100 лет, скорее всего, останутся всего лишь мечтой — разве что мы действительно наткнемся в открытом космосе на блуждающий антиастероид.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 214; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.008 с.)
Главная | Случайная страница | Обратная связь