Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Результаты работы космического телескопа «Кеплер»



Серьезным прорывом в поиске внесолнечных планет транзитным методом стал запуск в 2009 г. космического телескопа «Кеплер»[3]. О таком успехе астрономическое сообщество не могло и мечтать. Наряду с другим космическим телескопом «Хаббл» телескоп «Кеплер» стал, вероятно, самым успешным устройством сбора информации в истории космических полетов. Это чудо инженерной мысли весит около 1050 кг, оборудовано массивным зеркалом диаметром около 140 см и целым набором новейших высокотехнологичных датчиков. Эффективнее всего телескоп собирает данные, если подолгу направлен на одну и ту же точку в пространстве, поэтому летает он не по околоземной, а по околосолнечной орбите. Заняв в глубоком космосе рабочую позицию, которая может отстоять от Земли на 100 млн км, «Кеплер» при помощи набора гироскопов должен был быть постоянно наведен на 1/400 часть небесной сферы — небольшой участок в направлении созвездий Лебедя, Лиры и Дракона. На этом крохотном участке неба «Кеплер» проанализировал около 200 000 звезд, открыв тысячи внесолнечных планет. Полученные им данные заставили ученых пересмотреть наше положение во Вселенной.

Вместо других солнечных систем, похожих на нашу, астрономы увидели нечто совершенно неожиданное: планеты самых разных размеров, обращающиеся вокруг звезд на самых разных расстояниях. «Там есть планеты, аналогов которым в нашей Солнечной системе нет, некоторые из них по размеру попадают в промежуток между Землей и Нептуном, другие много меньше Меркурия, — говорит профессор Сара Сигер. — Но нам до сих пор не удалось обнаружить ни одной копии нашей Солнечной системы». В самом деле, получено так много странных результатов, что у астрономов не хватает теорий для их объяснения. «Чем больше данных мы получаем, тем меньше понимаем, — признается Сигер. — Полная путаница»[4].

Мы не в состоянии объяснить «поведение» даже самых часто встречающихся экзопланет. К примеру, многие газовые гиганты размером с Юпитер движутся, вопреки ожиданиям, не по круговым, а по сильно вытянутым эллиптическим орбитам.

Некоторые экзопланеты размером с Юпитер все же обращаются по круговым орбитам, но при этом располагаются так близко к центральной звезде, что в нашей Солнечной системе они оказались бы внутри орбиты Меркурия. Эти газовые гиганты называют «горячими юпитерами», звездный ветер постоянно сдувает с них атмосферу в открытый космос. Прежде астрономы считали, что планеты типа Юпитера сформировались в глубоком космосе, за миллиарды километров от центральной звезды. Если так и было, каким образом они подобрались так близко к ней?

Профессор Сигер признает, что ученые не знают этого наверняка. Но наиболее вероятный ответ стал для всех неожиданностью. По одной из теорий, все газовые гиганты формируются во внешних областях звездной системы, где много льда, способного собирать водород, гелий и пыль. Но в некоторых случаях в центральной части плоскости звездной системы также много пыли. Газовый гигант может постепенно терять энергию от трения при движении сквозь пылевое облако и двигаться по сходящейся спирали к центральной звезде.

Это объяснение вводит прежде неслыханную еретическую идею о странствующих планетах. Подбираясь потихоньку к своему солнцу, они могут пересечь орбиту какой-нибудь небольшой землеподобной планеты, выбросив ее в открытый космос. Так маленькая каменная планета может стать планетой-странницей, дрейфующей в одиночестве в открытом космосе и не привязанной ни к одной звезде. Поэтому мы не ожидаем увидеть землеподобные планеты в солнечных системах с газовыми гигантами на сильно эллиптических или близких к светилу орбитах.

Задним числом можно сказать, что эти странные результаты следовало предвидеть. Поскольку в нашей Солнечной системе планеты движутся по красивым правильным окружностям, астрономы считали, что шары из пыли, водорода и гелия, которые превращаются в солнечные системы, всегда уплотняются равномерно. Теперь же мы понимаем, что с гораздо большей вероятностью гравитация сжимает их беспорядочным, случайным образом, в результате чего возникают планеты на вытянутых или неправильных орбитах, которые могут пересекаться и сталкиваться друг с другом. Это важно, ведь вполне может оказаться, что для жизни благоприятны только солнечные системы с круговыми орбитами планет, как наша.

Землеподобные планеты

Землеподобные планеты невелики и вызывают лишь легкое ослабление или слабое искажение света от центральной звезды. Но при помощи космического телескопа «Кеплер» и гигантских наземных телескопов астрономы начали находить в космосе «суперземли», то есть каменные, подобно Земле, планеты, способные поддерживать жизнь в том виде, какой мы ее знаем, но крупнее Земли на 50–100%. Мы пока не можем ничего сказать о происхождении таких планет, но в 2016–2017 гг. было сделано несколько связанных с ними сенсационных открытий.

Проксима Центавра — ближайшая, после нашего Солнца, к Земле звезда. На самом деле она является частью тройной звездной системы и обращается вокруг пары более крупных звезд, известных как альфа Центавра A и B, обращающихся друг вокруг друга. Астрономы были поражены, когда около Проксимы Центавра обнаружилась планета всего на 30% крупнее Земли. Она получила название Проксима Центавра b.

«Это меняет все правила игры в экзопланетологии, — заявил Рори Барнс, астроном из Университета штата Вашингтон в Сиэтле. — То, что она так близка к нам, означает, что мы имеем возможность следить за ней успешнее, чем за какой бы то ни было другой планетой из обнаруженных до сих пор»[5]. Новые гигантские телескопы, которые сейчас разрабатываются, такие как космический телескоп «Джеймс Уэбб», сумеют, возможно, получить первые фотографии этой планеты. Профессор Сигер говорит: «Это поистине феноменально. Мы столько лет гадали, существуют ли внесолнечные планеты. Кто бы мог подумать, что одна такая планета имеется у ближайшей к нам звезды? »[6]

Центральная звезда Проксимы Центавра b — тусклый красный карлик массой всего 12% от массы Солнца. Чтобы попадать в зону жизни, где планета сможет поддерживать жидкую воду и даже, возможно, океаны, она должна располагаться относительно близко к этой звезде. Радиус орбиты планеты Проксима Центавра b составляет всего 5% от радиуса земной орбиты. Она намного быстрее Земли обращается вокруг своей звезды, совершая один полный оборот каждые 11, 2 суток. Сейчас идут горячие споры о том, совместимы ли условия на Проксиме Центавра b с жизнью земного типа. Одна из основных причин для сомнений — то, что эту планету, наверное, постоянно бомбардируют частицы звездного ветра, которые могут быть в 2000 раз энергичнее тех, что попадают на Землю. Чтобы защититься от этой бомбардировки, Проксима Центавра b должна обладать сильным магнитным полем. Пока у нас недостаточно информации, чтобы определить, так ли это.

Выдвинута гипотеза, что Проксима Центавра b может находиться со своей звездой в состоянии приливного захвата и потому обращена к звезде всегда одной и той же стороной, как Луна к Земле. Тогда эта сторона должна быть постоянно разогрета, а на другой должен царить вечный холод. В этом случае океаны жидкой воды могут существовать только в узкой полосе между двумя полушариями, где возможна умеренная температура. Допустим и другой вариант: если планета Проксима Центавра b обладает достаточно плотной атмосферой, ветры могут выравнивать температуру на ее поверхности. Тогда жидкие океаны могут существовать повсюду на планете.

Следующий шаг — определение состава атмосферы и наличие или отсутствие в ней воды и кислорода. Проксима Центавра b была обнаружена при помощи доплеровского метода, но химический состав ее атмосферы легче оценить при помощи транзитного метода. Когда какая-нибудь экзопланета проходит непосредственно перед центральной звездой своей системы, крохотная часть света звезды доходит до нас сквозь ее атмосферу. Молекулы определенных веществ в атмосфере поглощают звездный свет определенных длин волн, что позволяет ученым судить о природе этих молекул. Однако, чтобы это можно было проделать, ориентация орбиты экзопланеты должна быть подходящей, и вероятность того, что орбита Проксимы Центавра b ориентирована правильно, составляет всего 1, 5%.

Обнаружение молекул водяного пара на землеподобной планете стало бы поразительным достижением. Профессор Сигер объясняет, что «если говорить о маленькой каменной планете, то водяной пар в ее атмосфере может присутствовать только в том случае, если на поверхности есть жидкая вода. Если мы обнаружим водяной пар на каменной планете, то сможем сделать вывод, что на ней есть также жидкие океаны».

Семь землеподобных планет у одной звезды

Еще одно беспрецедентное открытие было сделано в 2017 г. Астрономы обнаружили солнечную систему, само существование которой противоречит всем теориям планетной эволюции. Семь землеподобных планет обращаются вокруг центральной звезды под названием TRAPPIST-1. Три из них располагаются в зоне жизни и могут иметь на поверхности жидкие океаны. «Это поразительная планетная система, не только потому, что мы обнаружили в ней так много планет, но и потому, что все они по размеру схожи с Землей», — заявил Микаэль Жийон, глава бельгийской научной группы, совершившей это открытие[7]. (Название TRAPPIST — это одновременно аббревиатура названия телескопа, которым пользовалась группа Жийона, и отсылка к популярному в Бельгии сорту пива.)

TRAPPIST-1 — это красный карлик всего в 38 световых годах от Земли, его масса составляет лишь 8% от массы Солнца. Как и у Проксимы Центавра, у этой звезды имеется зона жизни. Если «наложить» эту звездную систему на нашу, орбиты всех ее семи планет целиком улягутся в пределы орбиты Меркурия. Эти экзопланеты обращаются вокруг своей звезды менее чем за три недели, а ближайшая из них совершает полный оборот вокруг светила за 36 ч. Благодаря компактности этой солнечной системы планеты в ней гравитационно взаимодействуют и теоретически могут столкнуться друг с другом. Конечно, наивно ждать, что они на полном ходу врежутся друг в друга. К счастью, в 2017 г. установлено, что все они находятся в резонансе. Это означает, что их орбиты находятся в фазе одна с другой и никаких столкновений не будет. Судя по всему, эта планетная система устойчива. Что же касается Проксимы Центавра b, то астрономы продолжают исследовать возможные варианты с учетом солнечных вспышек и приливного захвата.

В сериале «Звездный путь» всякий раз, когда «Энтерпрайз» приближается к землеподобной планете, капитан Спок объявляет, что они подходят к планете «класса М». На самом деле в астрономии ничего подобного пока нет. Теперь, когда на сцене появились тысячи различных типов планет, включая немалое количество землеподобных, появление новой классификации — дело времени.

Близнец Земли?

Если где-то в космосе существует планета — двойник Земли, то обнаружить ее нам пока не удается. Зато нашлось около 50 суперземель. Особенно интересна планета Кеплер-452 b, открытая космическим телескопом «Кеплер» в 2015 г. и расположенная на расстоянии примерно 1400 световых лет от нас. Она в полтора раза крупнее нашей планеты, так что мы весили бы больше, чем весим на Земле, но в остальном жизнь там, возможно, не слишком бы отличалась от земной. В отличие от экзопланет, обращающихся вокруг красного карлика, Кеплер-452 b располагается у звезды, которая массивнее Солнца всего на 3, 7%. Период ее обращения составляет 385 земных суток, а равновесная температура на ней составляет примерно –8 º С, то есть чуть теплее, чем на Земле. Планета Кеплер-452 b лежит в зоне жизни. Астрономы, занятые поисками внеземного разума, направили на нее радиотелескопы, чтобы получать послания от цивилизации, если таковая там существует. Пока их приборы ничего не зарегистрировали. К сожалению, поскольку Кеплер-452 b находится далеко от нас, даже следующее поколение телескопов не позволит нам получить сколько-нибудь значительную информацию о составе ее атмосферы.

Интерес ученых вызывает также планета Кеплер-22 b, которая находится на расстоянии 600 световых лет и превосходит Землю по размеру в 2, 4 раза. Ее орбита на 15% меньше орбиты Земли — эта планета совершает полный оборот вокруг своего светила за 290 земных суток, но светимость ее центральной звезды Кеплер-22 на 25% уступает светимости Солнца. Два этих фактора компенсируют друг друга, так что, по мнению ученых, температура на поверхности планеты сравнима с температурой на Земле. Кеплер-22 b тоже находится в зоне жизни.

Но наибольшее внимание среди всех обнаруженных экзопланет привлекает к себе планета KOI 7711. Дело в том, что по состоянию на 2017 г. именно она по всем характеристикам больше всего похожа на Землю. Эта планета на 30% крупнее Земли, а центральная звезда системы очень похожа на Солнце. Планете KOI 7711 не грозит опасность быть сожженной солнечными вспышками. Продолжительность года на ней почти идентична земному году. Она располагается в зоне жизни своей звезды, но мы пока не в состоянии оценить наличие в ее атмосфере водяного пара. На первый взгляд все условия на планете KOI 7711 годятся для существования на ней какой-то формы жизни. От Земли ее отделяют 1700 световых лет — это самая далекая из трех названных планет.

Проанализировав десятки подобных планет, астрономы выяснили, что их, как правило, можно разделить на две категории. Первая из них — это суперземли, о которых мы говорили. Вторая — мини-нептуны (газовые карлики). Это газообразные планеты в 2–4 раза крупнее Земли, не похожие ни на что в наших ближайших окрестностях (наш Нептун в 4 раза больше Земли). Открыв очередную новую небольшую планету, астрономы стараются определить, к какой из названных категорий она принадлежит. Так биологи пытаются классифицировать новое животное, решив, млекопитающее это или рептилия. Загадка, однако, в том, почему эти категории планет не представлены в нашей Солнечной системе, тогда как у других звезд они распространены широко.

Планеты-странницы

Планеты-странницы (бродячие планеты) можно отнести к самым необычным из обнаруженных небесных тел. Они блуждают по Галактике сами по себе, не обращаясь вокруг конкретной звезды. Каждая из таких планет возникла, вероятно, в какой-нибудь звездной системе, но оказалась слишком близка к экзопланете размером с Юпитер — и была выброшена в открытый космос. Как мы уже отмечали, большие юпитероподобные планеты часто имеют эллиптические орбиты или медленно мигрируют по сходящейся спирали к центральной звезде. Их траектории могут пересекаться с траекториями более мелких планет, и вследствие этого бродячих планет в Галактике может оказаться даже больше, чем обычных. Мало того, согласно некоторым компьютерным моделям, наша Солнечная система, возможно, миллиарды лет назад тоже выбросила из себя с десяток странствующих планет.

Планеты-странницы не находятся вблизи от какого-либо источника света и сами света не излучают, поэтому поначалу казалось, что бесполезно даже пытаться их обнаружить. Но астрономы сумели все же найти несколько таких планет методом гравитационного линзирования, для которого требуется очень точное и довольно редкое выстраивание какой-нибудь фоновой звезды, бродячей планеты и детектора на Земле в одну линию. В результате, чтобы обнаружить горстку планет-странниц, приходится просматривать миллионы звезд. К счастью, этот процесс можно автоматизировать, так что поисками занимаются компьютеры, а не астрономы.

На данный момент обнаружено 20 потенциальных планет-странниц, одна из которых находится всего лишь в семи световых годах от Земли. Однако недавно японские астрономы, проверив 50 млн звезд, обнаружили до 470 возможных кандидатов в странники. По оценкам японских исследователей, на каждую звезду в нашей Галактике может приходиться по две планеты-странницы. Другие астрономы предполагают, что число блуждающих планет может превосходить число обычных в 100 000 раз.

Может ли на блуждающих планетах существовать жизнь такая, какой мы ее знаем? Это зависит от многих факторов. Подобно Юпитеру или Сатурну, некоторые из планет-странниц могут иметь множество покрытых льдом лун. Если так, то приливные силы могли бы расплавить лед и превратить его в океаны, где могла бы возникнуть жизнь. Но источники энергии в космосе не ограничиваются солнечным светом и приливными силами — источником энергии, без которого блуждающая планета не сможет породить жизнь, может быть радиоактивность.

В качестве иллюстрации вспомним один эпизод из истории науки. В конце XIX в. простой расчет, который произвел физик лорд Кельвин, показал, что Земля, по идее, должна была остыть через несколько миллионов лет после возникновения и оставаться промерзшей насквозь и весьма негостеприимной по отношению к жизни. Сообщение об этом вызвало несогласие биологов и геологов, настаивавших на том, что Земля существует миллиарды лет. Ошибка физиков выяснилась, когда Мария Склодовская-Кюри и другие открыли радиоактивность. Именно ядерные силы в ядре Земли, порождаемые долгоживущими радиоактивными элементами, такими как уран, уже не один миллиард лет помогают сохранить ядро Земли горячим.

Астрономы выдвинули предположение, что и блуждающие планеты могут обладать радиоактивными ядрами, которые помогают им оставаться относительно теплыми. Это означает, что радиоактивное ядро может, в принципе, обеспечивать теплом горячие источники и вулканические кратеры на дне океана, где возникнут необходимые для жизни химические вещества. Если странствующих планет в нашей Галактике много, как считают некоторые астрономы, то наиболее вероятным местом обнаружения жизни могут оказаться не зоны жизни возле звезд, а планеты-странницы и их луны.

Необычные планеты

Кроме того, астрономы исследуют множество совершенно поразительных планет, которые порой невозможно отнести ни к одной категории.

В фильме «Звездные войны» планета Татуин обращается вокруг двух звезд. Некоторые ученые высмеивали эту идею, поскольку орбита такой планеты была бы нестабильной и она упала бы на одну из звезд. Но уже обнаружены планеты, обращающиеся вокруг одной из звезд в тройной системе, как в системе Центавра. Мы нашли также системы, в которых планета вращается вокруг двойной звезды.

Была открыта планета, которая на первый взгляд может быть сделана из алмазов. Она называется 55 Рака e и по размеру превосходит Землю вдвое, зато весит примерно в восемь раз больше. В 2016 г. космический телескоп «Хаббл» успешно проанализировал ее атмосферу — с каменной экзопланетой это удалось проделать впервые. В ее атмосфере обнаружены водород и гелий, но нет следов водяного пара. Позже выяснилось, что эта планета богата углеродом, на который может приходиться около трети ее массы. Кроме того, температура на ней составляет 5127 º С. По одной из теорий, жар и давление в ее ядре могут быть высоки настолько, чтобы породить алмазную планету. Однако эти сверкающие залежи — если они, конечно, существуют — находятся от нас на расстоянии 40 световых лет, так что их добыча выходит далеко за пределы наших сегодняшних возможностей.

Обнаружены также возможные водные и ледяные миры. Этот факт вряд ли можно назвать неожиданным. Считается, что наша планета в начале свой истории тоже была покрыта льдом — этакая «Земля-снежок», летящая в космосе. А в эпохи после отступления ледников Земля была затоплена водой. Первой из шести распознанных потенциально покрытых водой экзопланет стала Gliese 1214 b, обнаруженная в 2009 г. От нас до нее 42 световых года, а сама она в шесть раз больше Земли. Эта планета находится за пределами зоны жизни, ее орбита пролегает в 70 раз ближе к ее светилу, чем орбита Земли. Температура на ее поверхности может достигать 280 º С, так что жизнь земного типа там вряд ли возможна. Но использование различных фильтров для анализа света позволило подтвердить значительное количество воды в ее составе. Хотя воды в знакомой нам жидкой форме там может и не оказаться — из-за высокой температуры и давления на поверхности Gliese 1214 b может оказаться паровой планетой.

Нам пришлось переосмыслить свое представление и о звездах тоже. Когда-то мы думали, что наша желтая звезда Солнце типична для Вселенной, но сейчас астрономы уверены, что чаще всего в ней встречаются тусклые красные карлики, излучающие лишь небольшую долю света Солнца и невидимые невооруженным глазом. По одной из оценок, 85% звезд Млечного Пути — красные карлики. Чем меньше звезда, тем медленнее она сжигает свое топливо — водород — и тем дольше может светить. Красные карлики могут гореть триллионы лет, намного больше, чем 10 млрд лет, отмеренных Солнцу. Неудивительно, наверное, что и Проксима Центавра b, и система TRAPPIST содержат красные карлики — ведь их так много. Таким образом, область пространства вокруг этих звезд может оказаться одной из самых перспективных при поиске землеподобных планет.

Перепись звезд Галактики

Орбитальный телескоп «Кеплер» исследовал уже достаточное число планет в нашей Галактике, чтобы мы могли провести их грубый анализ. Данные указывают, что в среднем каждая звезда, которую мы видим, имеет около себя какую-нибудь планету. Около 20% звезд, подобно нашему Солнцу, имеют около себя землеподобные планеты, то есть планеты примерно земного размера, расположенные в зоне жизни. Поскольку всего в Галактике приблизительно 100 млрд звезд, в относительной близости к нам, возможно, существует около 20 млрд землеподобных планет. На самом деле это очень скромная оценка — реальное их число может оказаться намного больше.

К несчастью, аппарат «Кеплер», приславший нам горы информации, кардинально изменившей наши представления о Вселенной, в какой-то момент стал работать с перебоями. В 2013 г. начал отказывать один из его гироскопов, и аппарат потерял способность фокусироваться на планетах.

В настоящее время, однако, планируются миссии, которые должны углубить наши знания об экзопланетах. В 2018 г. был запущен аппарат TESS (Transiting Exoplanet Survey Satellite). В отличие от «Кеплера», он будет сканировать не небольшой участок, а небо целиком. За два года TESS проверит 200 000 звезд. Особое внимание будет уделено звездам в 30–100 раз более ярким, чем те, которые проверял «Кеплер», включая все землеподобные планеты или суперземли в нашей области Галактики. Астрономы ожидают, что таких наберется около 500. Более того, космический телескоп «Джеймс Уэбб», призванный стать заменой «Хабблу», скоро приступит к работе и сможет, по идее, даже сфотографировать некоторые из этих экзопланет.

Землеподобные планеты станут, возможно, первыми пунктами назначения для будущих звездолетов. Теперь, когда мы стоим на пороге более глубокого и подробного исследования этих планет, важно сосредоточить внимание на двух моментах: на жизни человека в открытом космосе и биологических требованиях, которые она предъявляет, и на встрече с инопланетной жизнью в космосе. Для начала мы должны присмотреться к нашей жизни на Земле и подумать, как можно ее усовершенствовать перед лицом новых задач. Возможно, нам придется изменить себя — увеличить продолжительность жизни, оптимизировать физиологические процессы, даже изменить генетический наследственный код. Кроме того, нам придется считаться с возможностью обнаружения на экзопланетах чего угодно — от микробов до развитых цивилизаций. Кто ждет нас там и что может означать для нас эта встреча?

 

 

Часть III. Жизнь во Вселенной

Целые эпохи, потребные для перелета в другой конец Галактики, не выглядят пугающе для бессмертных существ.

Сэр Мартин Рис, королевский астроном Англии

 

10

Бессмертие

Фильм «Век Адалин» история женщины, которая родилась в 1908 г., а в молодости попала в снежный буран и замерзла насмерть. К счастью, немного позже в нее попала молния, которая оживила ее. Это необычное событие изменило ДНК Адалин, она загадочным образом перестала стареть.

В то время как ее подруги и возлюбленные стареют, Адалин остается молодой. Возникают неизбежные подозрения и слухи, и женщине приходится покинуть город. Вместо того чтобы наслаждаться своей нескончаемой юностью, она изолирует себя от общества и почти ни с кем не разговаривает. Бессмертие становится для нее проклятием.

В финале фильма она попадает в аварию и погибает. В машине скорой помощи электрический разряд дефибриллятора не только запускает ее сердце и оживляет ее, но и устраняет генетический результат воздействия молнии — Адалин вновь становится смертной. Вместо того чтобы рыдать из-за утраченного бессмертия, она радуется, обнаружив у себя первый седой волос.

Если Адалин, по существу, отказывается от бессмертия, то наука движется в противоположном направлении и быстро разгадывает загадки процесса старения. Ученые, связанные с исследованиями дальнего космоса, остро заинтересованы в этих исследованиях, поскольку межзвездные расстояния огромны и звездолету может потребоваться не одна сотня лет на их преодоление. Процесс строительства звездолета, само путешествие, которое нужно пережить, и заселение далеких планет займут, вероятно, не одну человеческую жизнь. Чтобы человек мог перенести путешествие и добраться до звезд, нам придется строить корабли, рассчитанные на несколько сменяющих друг друга поколений, помещать астронавтов и будущих поселенцев в анабиоз — или увеличивать продолжительность их жизни.

Рассмотрим подробнее каждый из способов, позволяющих человеку добраться до звезд.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 266; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.042 с.)
Главная | Случайная страница | Обратная связь