Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Эффект Казимира и минус-энергия



Кристаллов дилития на свете нет, но минус-энергия существует, и это оставляет открытым вопрос о наличии в природе кротовых нор, сжатого пространства и даже машины времени. И хотя законы Ньютона исключают существование минус-энергии, квантовая теория это допускает через эффект Казимира, который был предложен в 1948 г. и измерен в лаборатории в 1997 г.

Представим, у нас имеются две параллельные незаряженные металлические пластины. Когда их разделяет значительное расстояние, мы говорим, что между ними действует нулевая электрическая сила. Однако при сближении они загадочным образом начинают притягивать друг друга — получается, что мы можем извлечь из них некоторую энергию. Поскольку начинали мы с нулевой энергией, а, сблизив пластины, получили положительную, значит, сами пластины первоначально обладали отрицательной энергией. Причина этого нам не ясна. Здравый смысл говорит нам, что вакуум — это состояние пустоты с нулевой энергией, а на самом деле в нем кишмя кишат частицы вещества и антивещества, которые материализуются ненадолго из вакуума и тут же вновь аннигилируют. Эти «виртуальные» частицы появляются и исчезают так стремительно, что не нарушают законы сохранения вещества и энергии, то есть принцип, согласно которому полное количество материи и энергии во Вселенной всегда остается одинаковым. Постоянное бурление в вакууме порождает давление. Поскольку снаружи от параллельных пластин взаимодействий материя — антиматерия происходит больше, чем между ними, это давление подталкивает пластины друг к другу, создавая при этом минус-энергию. Это и есть эффект Казимира, который наглядно демонстрирует в квантовой теории возможность существования отрицательной энергии.

Первоначально, поскольку сила в эффекте Казимира чрезвычайно мала, ее можно было измерить только при помощи самой точной и чувствительной аппаратуры. Но нанотехнологии уже достигли того уровня, когда мы в состоянии заниматься отдельными атомами. Во время съемок документального телефильма мне довелось побывать в лаборатории в Гарварде, где имелся небольшой настольный прибор, при помощи которого можно было манипулировать атомами. В ходе эксперимента, который я наблюдал, с трудом удавалось удерживать два близких атома, чтобы они не разлетелись или, наоборот, не слиплись под действием силы Казимира, которая может быть как отталкивающей, так и притягивающей. Может быть, для физика, обдумывающего строительство звездолета, минус-энергия — это высшая ценность и совершенно необходимая вещь, но специалисту по нанотехнологиям сила Казимира, довольно мощная на атомном уровне, только мешает.

В заключение скажем: отрицательная энергия существует, и, если бы удалось каким-то образом собрать ее достаточно, тогда мы могли бы, в принципе, построить машину для создания кротовых нор или варп-двигатель и исполнить одну из величайших надежд научной фантастики. Но до этих технологий нам еще очень далеко, мы поговорим о них в главах 13 и 14. А пока нам придется обходиться световыми парусами, которые к концу нашего столетия, возможно, будут бороздить космическое пространство и доставлять нам первые фотографии экзопланет, сделанные с близкого расстояния. К XXII в. мы, возможно, сможем и сами долететь до этих планет на ракетах с термоядерными двигателями. А если сумеем решить стоящие перед нами сложные инженерные задачи, то не исключено, что мы сможем воплотить в реальность также двигатели на антивеществе, прямоточные двигатели и космический лифт.

Но что мы отыщем в дальнем космосе, если сумеем в конце концов построить звездолеты? Обнаружатся ли там иные миры, способные стать человеку домом? К счастью, космические телескопы и спутники дают нам возможность подробно рассмотреть то, что скрывается меж звезд.

Поэтому я утверждаю, что мысль о существовании обитателей иных миров есть не только мнение, но и твердая убежденность, на истинность которой я поставил бы даже многие блага жизни.

Иммануил Кант

 

Желание узнать что-нибудь о наших соседях в безбрежных глубинах космоса порождено не праздным любопытством и не жаждой знаний, но более глубокой причиной, и это чувство глубоко коренится в сердце каждого человека, в принципе способного мыслить.

Никола Тесла

9

«Кеплер» и полная планет Вселенная

Каждые несколько дней Джордано Бруно берет реванш.

Бруно, предшественник Галилея, был признан еретиком и сожжен заживо в Риме в 1600 г. Звезд в небесах настолько много, говорил он, что наше Солнце, должно быть, является одним из множества. А вокруг других звезд обращается множество планет, и некоторые из них, вероятно, даже населены другими существами[1].

Церковь семь лет без суда держала Бруно в заключении, затем его раздели догола, провели по улицам Рима, завязав язык кожаным ремешком, и привязали к деревянному столбу. Ему дали последний шанс раскаяться и отречься от своих идей, но он отказался.

Пытаясь уничтожить наследие Бруно, Церковь внесла все написанные им тексты в список запрещенных книг. В отличие от трудов Галилея, запрет с работ Бруно не был снят вплоть до 1966 г. Галилей просто утверждал, что Солнце, а не Земля является центром Вселенной. Бруно считал, что у Вселенной центра нет вообще. Он одним из первых в истории заявил, что Вселенная, возможно, бесконечна и тогда Земля всего лишь один из множества камешков в небе. Будь его мнение принято, Церковь никак не смогла бы остаться центром Вселенной — ведь центра-то у нее нет.

В 1584 г. Бруно подытожил свою философию, написав: «Мы заявляем, что это пространство бесконечно… а в нем бесконечность миров того же рода, что наш собственный»[2]. Сегодня, более 400 лет спустя, в пределах Млечного Пути обнаружено и внесено в каталоги около 4000 экзопланет, и список этот удлиняется чуть ли не ежедневно. В 2017 г. в НАСА насчитывали 4496 кандидатов на статус планеты (для 2330 из них статус уже подтвержден), обнаруженных космическим телескопом «Кеплер».

Если будете в Риме, вам, быть может, захочется побывать на Кампо-деи-Фиори — площади Цветов, где внушительная статуя Бруно установлена на том самом месте, где он встретил смерть. Когда я там был, на площади бурлила толпа, люди были увлечены шопингом, большинство из них, возможно, даже не знало, что на этом месте сжигали еретиков. Но сама статуя Бруно окружена молодыми бунтарями, художниками и уличными музыкантами, которые, что неудивительно, собираются именно здесь. Разглядывая эту мирную сцену, я думал о том, какая атмосфера должна была царить здесь во времена Бруно, чтобы воспламенять ненавистью жаждущую убийства толпу. Как надо было завести людей, чтобы они с восторгом приветствовали пытки и казнь бродячего философа?

Несколько столетий идеи Бруно оставались невостребованными, потому что поиск внесолнечных планет — дело чрезвычайно трудное, прежде считалось, что почти невозможное. Планеты не излучают собственного света. Даже их отраженный свет примерно в миллиард раз слабее света ее звезды, резкое сияние которой скрывает планету из виду. Но благодаря гигантским телескопам и космическим детекторам мы получаем сегодня поток новых данных, доказывающих правоту Бруно.

Действительно ли наша Солнечная система ничем не примечательна?

В детстве я прочел книгу по астрономии, которая изменила мои представления о Вселенной. В ней описывались планеты и делалось заключение о том, что наша Солнечная система, по всей вероятности, типична — в полном соответствии с идеями Бруно. Однако автор книги пошел дальше. Он писал, что планеты в других солнечных системах обращаются вокруг своих звезд по почти идеальным круговым орбитам, как в нашей системе. При этом те планеты, что находятся ближе к светилу, каменные, а те, что дальше, — газовые гиганты. Наше Солнце решительно ничем не выделяется из массы звезд.

Мысль о том, что мы живем в тихом, ничем не примечательном пригороде Галактики, казалась простой и удобной.

Но как же мы ошибались!

Сегодня мы понимаем, что наша ситуация совершенно нетипична и что звездные системы, похожие на нашу, с ее упорядоченной последовательностью планет и почти круговыми орбитами, в галактике Млечный Путь встречается редко. Начиная исследовать другие звезды, мы сразу же натыкаемся в Энциклопедии внесолнечных планет на солнечные системы, кардинально отличные от нашей. Когда-нибудь в этой планетной энциклопедии, возможно, будет описан и наш будущий новый дом.

За созданием этой энциклопедии стоит астроном Сара Сигер — профессор планетологии в МТИ и одна из 25 самых влиятельных фигур в исследовании космоса, по версии журнала Time. Я спросил, интересовалась ли она наукой в детстве. Сара призналась, что нет, хотя Луна всегда привлекала ее внимание. Сигер поражало, что Луна, казалось, всегда следовала за ней, куда бы ни вез ее отец. Как же так? Как может нечто столь далекое гнаться за машиной?

(Эта иллюзия возникает из-за параллакса. Мы оцениваем расстояния, двигая головой. Близкие к нам объекты, такие как деревья, сдвигаются, как нам кажется, сильнее всего, тогда как далекие объекты, такие как горы, вообще не меняют положения. Но объекты, которые расположены непосредственно рядом с нами и движутся вместе с нами, тоже представляются нам неподвижными. Поэтому наш мозг путает удаленные объекты, такие как Луна, с близкими, такими как руль машины; в результате нам кажется, что то и другое движется, не отставая, рядом с нами. Если принять во внимание параллакс, то многие НЛО, замеченные в преследовании наших машин, на самом деле окажутся планетой Венерой.)

Со временем интерес профессора Сигер к небесам расцвел и превратился в настоящую любовь. Родители иногда покупают телескопы своим любознательным отпрыскам, но Сара приобрела себе первый телескоп сама на деньги, заработанные в летние каникулы. Она вспоминает, как в 15 лет увлеченно рассказывала двум своим друзьям о взорвавшейся звезде, получившей название «сверхновая 1987а», которая совсем недавно появилась в небе. Эта звезда вошла в историю как ближайшая к нам сверхновая после 1604 г., и Сара планировала пойти на вечеринку и отметить это редкое событие. Ее друзья, однако, были в недоумении. Они не понимали, о чем девушка говорит.

Профессор Сигер превратила свой энтузиазм и восхищение чудесами Вселенной в яркую карьеру специалиста по экзопланетам — специалиста в научной области, которой два десятилетия назад попросту не существовало, но в настоящий момент является одной из самых актуальных в астрономии.

Методы поиска экзопланет

Экзопланеты сложно разглядеть непосредственно, их ищут при помощи ряда косвенных методов. В разговоре со мной профессор Сигер подчеркнула: астрономы уверены в своих результатах, поскольку обнаруживают экзопланеты сразу несколькими различными методами. Один из самых популярных называется методом транзитов. Иногда, анализируя интенсивность света звезды, можно заметить, что периодически этот свет ослабевает. Это слабый эффект, но он указывает на присутствие планеты, которая, если смотреть с Земли, прошла перед своим светилом, затмив при этом часть его излучения. А поскольку проход планеты можно отследить, можно рассчитать и ее орбитальные параметры.

Планета размером с Юпитер снизит светимость звезды, подобной нашему Солнцу, примерно на 1%. Для землеподобной планеты снижение составит 0, 008%. Примерно настолько ослабит свет автомобильной фары комар, пролетевший перед ней. К счастью, как объясняет профессор Сигер, наши инструменты настолько чувствительны и точны, что могут улавливать малейшие изменения светимости, связанные с прохождением нескольких планет; по их данным можно доказывать существование целых солнечных систем. Однако не все экзопланеты проходят перед звездой для наблюдателя с Земли. Орбиты некоторых из них наклонены, и такие планеты невозможно обнаружить транзитным методом.

Еще один популярный метод связан с фиксацией радиальной скорости — это доплеровский метод. Астрономы высматривают звезды, которые как бы регулярно движутся вперед и назад. Если у звезды имеется большая планета размером с Юпитер, то на самом деле звезда и планета обращаются друг вокруг друга. Представьте себе вращающуюся гантель: две массы, представляющие центральную звезду и ее «Юпитер», обращаются вокруг общего центра.

Планета размером с Юпитер невидима с большого расстояния, но ее наличие можно с математической точностью определить по отклонениям в движении ее звезды. Доплеровский метод позволяет вычислить скорость этого движения. К примеру, если желтая звезда движется по направлению к нам, световые волны сжимаются, как меха аккордеона, и желтый свет становится слегка голубоватым. Если она движется от нас, свет растягивается и слегка краснеет. Скорость звезды можно определить по тому, насколько меняется частота света при движении звезды вперед и назад по отношению к детектору. Аналогичный процесс происходит, когда полиция направляет на вашу машину радар: изменения в отраженном излучении позволяют судить о том, с какой скоростью вы едете.

Кроме того, тщательное наблюдение за центральной звездой на протяжении нескольких недель или даже месяцев позволяет ученым оценить массу планеты при помощи закона всемирного тяготения Ньютона. Доплеровский метод утомителен, но именно он в 1992 г. позволил обнаружить первую экзопланету (и вызвал энтузиазм у устремившихся на поиски астрономов). Проще всего было отыскивать планеты размером с Юпитер, поскольку самые крупные объекты соответствуют максимальной амплитуде движения центральной звезды.

Метод транзитов и доплеровский метод — основные способы обнаружения внесолнечных планет, но в последнее время было предложено еще несколько методов. Один из этих методов — непосредственные наблюдения, которые, как уже упоминалось, осуществить очень непросто. Однако профессор Сигер с энтузиазмом отозвалась о планах НАСА по разработке космических зондов, способных тщательно и точно заслонить свет центральной звезды, который, собственно, и не позволяет визуально обнаружить планету.

Еще одним перспективным альтернативным методом поиска экзопланет может стать метод гравитационного линзирования, хотя работает он только в тех случаях, когда Земля, экзопланета и ее центральная звезда располагаются строго на одной линии. Из теории гравитации Эйнштейна мы знаем, что свет, проходя мимо небесного тела, может искривляться, поскольку большая масса обладает способностью изменять ткань пространства-времени вокруг себя. Даже если объект для нас невидим, он, как прозрачное стекло, изменяет траекторию света. Если планета пройдет непосредственно перед далекой звездой, свет звезды исказится и образует кольцо. Такой рисунок света называется кольцом Эйнштейна и свидетельствует о присутствии значительной массы между наблюдателем и звездой.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 216; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь