Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ И СРЕДСТВА ЗАЩИТЫ ОТ КОРРОЗИИ АГРЕГАТА



КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ И СРЕДСТВА ЗАЩИТЫ ОТ КОРРОЗИИ АГРЕГАТА

Введение

 

На стадии создания проекта цеха очистки дымовых газов МСЗ №4 «Руднево» в этом разделе решается задача, направленная на создание надежных долговечных и высокоэффективных агрегатов.

Выбор конструкционных материалов для данного цеха производится на основе исходных данных на проектирование, таких как температура среды, химический и процентный состав рабочей среды, абразивный износ, а также все параметры окружающей среды связанные с атмосферной коррозией.

Разрушение металлических аппаратов, конструкций, трубопроводов и других металлических изделий может быть вызвано различными причинами. Однако основной причиной, вызывающей коррозионное разрушение металлов и сплавов, является протекание на их поверхности электрохимических или химических реакций вследствие воздействия внешней среды. В зависимости от характера этих реакций коррозионные процессы происходят по двум механизмам - электрохимическому и химическому.

1. К химической коррозии относятся процессы, протекающие при непосредственном химическом взаимодействии между металлом и агрессивной средой и не сопровождающиеся возникновением электрического тока.

. К электрохимической коррозии, являющейся гетерогенной электрохимической реакцией, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах.

Электрохимическая коррозия в зависимости от характера агрессивной среды и условий протекания может быть:

) кислотная (в растворах кислот);

) щелочная (в растворах щелочей);

) солевая (в водных растворах солей);

) в расплавленных солях и щелочах;

) атмосферная (в атмосфере воздуха или любого другого газа); это наиболее распространенный вид коррозии;

) почвенная (под воздействием на металл почвы или грунта); этому виду коррозии подвержены трубопроводы и другие подземные сооружения;

) коррозия внешним током или электрокоррозия (под влиянием тока от внешнего источника); коррозия, наблюдаемая обычно у подземных сооружений и обусловленная тем, что часть токов, ответвляясь с электроустановок, проходит через землю в находящиеся в ней сооружения; этот вид коррозии наблюдается также в электролизных цехах;

) контактная (вызываемая контактом двух разнородных металлов, имеющих разные потенциалы).

В приведенных выше условиях возможны также следующие виды коррозии:

) коррозия под напряжением - коррозия при одновременном воздействии на металл агрессивной коррозионной среды и механических напряжений; в зависимости от характера напряжений различают коррозию при постоянных растягивающих внешних нагрузках или внутренних напряжениях - коррозионное растрескивание и коррозию при переменных нагрузках - коррозионную усталость; многие аппараты в химической промышленности работают в указанных условиях и подвержены этому виду коррозии в случае неправильного конструирования отдельных узлов;

) коррозионная кавитация - коррозия металла в условиях ударного воздействия агрессивной среды (например, разрушение лопастей гребного винта парохода);

) коррозия при трении - коррозия металла в условиях трения;

) биокоррозия - коррозия металлов при участии продуктов, выделяемых микроорганизмами в грунтах и электролитах.

Известны и другие виды коррозии в зависимости от условий эксплуатации конструкций и сооружений (коррозия при переменном погружении, при полном погружении, коррозия газо-жидкостная и др.).

 

Общая характеристика условий эксплуатации агрегата

 

Технологическая схема состоит из четырех последовательно связанных аппаратов:

1 циклона,

2 мокро-сухого абсорбера, с узлом приготовления известкового молока,

3 реактора,

4 рукавного фильтра.

Рассмотрим исследуемые аппараты. Запыленные дымовые газы после котла с t = 190 0C поступают в циклон, где происходит первичная очистка дымовых газов от золы. Далее дымовые газы поступают в мокро-сухой абсорбер, где за счет контакта с распыленным известковым молоком, происходит очистка от HF, HCL, SO2, а также процесс охлаждения при испарении воды до t = 190 0C.

Для осаждения кислотосодержащих остатков в дымовых газах, а также диоксинов, фуранов и тяжелых металлов предусмотрен реактор летучей золы, в котором эти вредные вещества связываются сухим адсорбентом (" Вюльфрасорп С" ). С этой целью адсорбент, представляющий собой смесь из гидроксида кальция и активированного угля с большой удельной поверхностью, впрыскивается перед рукавным фильтром в противотоке в дымовые газы. Сужение типа трубы Вентури вгазоходе после распылительного абсорбера служит для равномерного распределения адсорбента по сечению газохода. Выше названные вредные вещества вступают в реакцию с адсорбентом и, прежде всего, со слоями твердых частиц, агломерирующимися на внешней стороне рукавов рукавного фильтра (лепешка). Адсорбент подается пневматически из силоса, соответственно, к местам распыления в газоходе.

Рукавный фильтр скомпонованный в виде модульной конструкции служит для улавливания содержащихся в дымовых газах:

· летучей золы, не осаженной в циклонах,

·   остаточных веществ после распылительного абсорбера и реактора летучей золы.

Известковое молочко готовится на подготовительной линии, состоящей из последовательно соединенных аппаратов:

· силос гидроксида кальция

·   мешалка

·   насосы

Силос гидроксида кальция объемом 200 м3 представляет металлическую цилиндрическую стальную емкость, которая находится в помещении. Температура помещения поддерживается на уровне 18 - 20 0C. Гидроксид кальция поступает через дозирующее устройство в мешалку для приготовления суспензии. Кроме реагента в мешалку подается хим. подготовленная вода с такой же температурой.

 

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ И ЗАЩИТА ОТ КОРРОЗИИ АППАРАТА (МАШИНЫ)

Циклон. Введение

 

Циклон служит для предварительного осаждения летучей золы из уходящих дымовых газов. Отделенные пылевые частицы собираются в осадительной емкости под воронкой циклона и по пневмотранспорту направляются в бункеры золы котла и летучей золы.

Для очистки продуктов сгорания ТБО от твердых частиц в технологической схеме завода применены два параллельно-расположенные циклона. Технологическая схема циклона приведена на рис. 2.

 

Рис. 2. Технологическая схема циклона

 

Дымовой газ после котла утилизатора тангенциально направляется в цилиндрические, вертикально расположенные циклоны, приводится во вращение, в результате чего крупные частицы летучей золы отделяются вследствие центробежной силы и оседают в конусной части циклона (рис. 2). Во избежание забивки конуса вследствие налипания золы на стенки, стенки конуса снабжены сопровождающим отоплением. Эффективность улавливания золы в циклоне составляет примерно 70%. Перепад давления на циклоне составляет 1000 Па.

Отделенные частицы' золы осаждаются в накопительной емкости под конусной частью циклона, где расположены два смотровых лючка, и по шнековому транспортеру через шлюзовой затвор поступают в приемный резервуар пневматического транспортёра. Приёмный резервуар служит для того, чтобы собирать оседающую летучую золу и подводить её в пневматический транспортёр. Зола из приемного бункера посредством сжатого воздуха транспортируется в силосостатков после газоочистки.

Диаметр циклона 3 м; общая высота - 16, 2 м; высота конусной части -7, 4 м..

 

Рукавный фильтр. Введение

 

Рукавный фильтр служит для улавливания содержащихся в дымовых газах:

-   летучей золы, не осажденной в циклонах;

-   остаточных веществ после распылительного абсорбера и реактора летучей золы.

Для предотвращения прямого набегания потока на фильтрующие элементы дымовые газы направляются через входное отверстие на дефлектор в успокоительной камере. Одновременно достигается лучшее распределение дымовых газов в рукавной камере.Пыль осаждается на наружной поверхности рукавов фильтра, в то время как обеспыленные дымовые газы выводятся из фильтра через камеру очищенного газа.

Корпус рукавного фильтра разделяется на:

камеру очищенных газов,

рукавную камеру с интегрированным в нее распределительным газоходом неочищенных газов

пылевой бункер.

Очистка рукавов фильтра (4 модуля, в каждом по 192 рукава) производится по достижении определенного значения перепада давления (15 мбар) в процессе эксплуатации (оперативная система управления) при помощи сжатого воздуха. Дифференциальным манометром давлений очищенного и неочищенного дымовых газов подается управляющий сигнал на соленоидныеклапаны. Каждым соленоидным клапаном управляется ряд из 16 рукавов. Очистка производится при перепаде давления, составляющем примерно 15 мбар. Заданное значение перепада давления определяет образование лепешки на поверхности рукавов. Если значение перепада давления превышает или снижается ниже предельно допустимого, на щит управления поступает сигнал тревоги. Необходимое абсолютное давление очищающего воздуха (прим. 5, 5 бар) устанавливается регулирующим клапаном.

Рис. 4. Рукавный фильтр.

Список использованной литературы

 

1. Клинов И.Я, Удыма П.Г, Молоканов А.В., Горяинова А.В., Химическое оборудование в коррозионностойком исполнении., - М.: Машиностроение, 1970., -589 с.;

2. Сухотин А.М., Зотиков В.С., Химическое сопротивление материалов, - Л.: Химия, 1975, - 408 с.;

3. Пахомов В.С., Паршин А.Г., Коррозионностойкие металлы и сплавы для химической аппаратуры, Учебное пособие, -М.: МИХМ, 1985, - 84 с.;

4. Лащинский А.А., Толчинский А.Р., Основы конструирования и расчета химической аппаратуры, - Л.: Машиностроение, 1970, - 752 с.;

5. Сорокина В.Г., Гервасьева М.А., Стали и сплавы, Марочник, -М.: Интермет инжиниринг, 2003, -608 с..

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ И СРЕДСТВА ЗАЩИТЫ ОТ КОРРОЗИИ АГРЕГАТА

Введение

 

На стадии создания проекта цеха очистки дымовых газов МСЗ №4 «Руднево» в этом разделе решается задача, направленная на создание надежных долговечных и высокоэффективных агрегатов.

Выбор конструкционных материалов для данного цеха производится на основе исходных данных на проектирование, таких как температура среды, химический и процентный состав рабочей среды, абразивный износ, а также все параметры окружающей среды связанные с атмосферной коррозией.

Разрушение металлических аппаратов, конструкций, трубопроводов и других металлических изделий может быть вызвано различными причинами. Однако основной причиной, вызывающей коррозионное разрушение металлов и сплавов, является протекание на их поверхности электрохимических или химических реакций вследствие воздействия внешней среды. В зависимости от характера этих реакций коррозионные процессы происходят по двум механизмам - электрохимическому и химическому.

1. К химической коррозии относятся процессы, протекающие при непосредственном химическом взаимодействии между металлом и агрессивной средой и не сопровождающиеся возникновением электрического тока.

. К электрохимической коррозии, являющейся гетерогенной электрохимической реакцией, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах.

Электрохимическая коррозия в зависимости от характера агрессивной среды и условий протекания может быть:

) кислотная (в растворах кислот);

) щелочная (в растворах щелочей);

) солевая (в водных растворах солей);

) в расплавленных солях и щелочах;

) атмосферная (в атмосфере воздуха или любого другого газа); это наиболее распространенный вид коррозии;

) почвенная (под воздействием на металл почвы или грунта); этому виду коррозии подвержены трубопроводы и другие подземные сооружения;

) коррозия внешним током или электрокоррозия (под влиянием тока от внешнего источника); коррозия, наблюдаемая обычно у подземных сооружений и обусловленная тем, что часть токов, ответвляясь с электроустановок, проходит через землю в находящиеся в ней сооружения; этот вид коррозии наблюдается также в электролизных цехах;

) контактная (вызываемая контактом двух разнородных металлов, имеющих разные потенциалы).

В приведенных выше условиях возможны также следующие виды коррозии:

) коррозия под напряжением - коррозия при одновременном воздействии на металл агрессивной коррозионной среды и механических напряжений; в зависимости от характера напряжений различают коррозию при постоянных растягивающих внешних нагрузках или внутренних напряжениях - коррозионное растрескивание и коррозию при переменных нагрузках - коррозионную усталость; многие аппараты в химической промышленности работают в указанных условиях и подвержены этому виду коррозии в случае неправильного конструирования отдельных узлов;

) коррозионная кавитация - коррозия металла в условиях ударного воздействия агрессивной среды (например, разрушение лопастей гребного винта парохода);

) коррозия при трении - коррозия металла в условиях трения;

) биокоррозия - коррозия металлов при участии продуктов, выделяемых микроорганизмами в грунтах и электролитах.

Известны и другие виды коррозии в зависимости от условий эксплуатации конструкций и сооружений (коррозия при переменном погружении, при полном погружении, коррозия газо-жидкостная и др.).

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 39; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь