Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Занятие 9. Финансовые ренты
Одним из ключевых понятий в финансовом менеджменте является понятие денежного потока как совокупности притоков и/или оттоков денежных средств, имеющих место через некоторые временные интервалы. Денежный поток, срок действия которого ограничен, называется срочным; если притоки (оттоки) осуществляются неопределенно долго, денежный поток называется бессрочным. Если притоки (оттоки) осуществляются в начале периодов, денежный поток носит название пренумерандо, если в конце периодов - постнумерандо. Известны две задачи оценки денежного потока с учетом фактора времени: прямая и обратная. Первая задача позволяет оценить будущую стоимость денежного потока; для понимания экономической сущности этой задачи ее легче всего увязывать с процессом накопления денег в банке и оценкой величины наращенной суммы. Вторая задача позволяет оценить приведенную стоимость денежного потока; наиболее наглядная ситуация в этом случае - оценка текущей стоимости ценной бумаги, владение которой дает возможность в будущем получать некоторые платежи. Аннуитет представляет собой частный случай денежного потока. Аннуитет - однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Постоянный аннуитет имеет дополнительное ограничение, его элементы одинаковы по величине. Ускоренные методы оценки денежных потоков основаны на применении мультиплицирующих и дисконтирующих множителей, которые табулированы в специальных финансовых таблицах. Таблицы инвариантны по отношению к виду потока - постнумерандо или пренумерандо; оценки для потока пренумерандо отличаются от соответствующих оценок для потока постнумерандо на величину множителя (1+ r ), где r - ставка в долях единицы. В финансовой математике разработаны универсальные формулы, позволяющие делать расчеты несовпадениях моментов поступления аннуитетных платежей и начисления процентов. Цель проведения занятия - научиться решать прямую и обратную задачи оценки аннуитета, используя формулы финансовых вычислений.
Основные формулы
(9.1) (9.2)
(9.3) (9.4) (9.5) (9.6) Типовые задачи с решениями Задача 1. Анализируются 2 варианта накопления средств по схеме аннуитета пренумерандо, т.е. поступление денежных средств осуществляется в начале соответствующего временного интервала: План 1: Вносить на депозит 5000 долл. каждые полгода при условии, что банк начисляет 10% годовых с полугодовым начислением процентов: План 2: делать ежегодный вклад в размере 10000 долл. на условиях 9% годовых при ежегодном начислении процентов. Ответьте на следующие вопросы: 1. Какая сумма будет на счёте через 10 лет при реализации каждого плана? Какой план более предпочтителен? 2. Изменится ли ваш выбор, если процентная ставка в плане 2 будет повышена до 10%? Решение План 1: Принимая за базовый период полгода, воспользуемся формулой (9.1 ) при А=5000; r =5%; n =20: FV 1 =0, 5 × FM 3(5%, 20)=5000 × 33, 066= 165330 План 2: Принимая за базовый период год, воспользуемся формулой (9.1 ) при А=10000; r =9%; n =10: FV 2 =10000 × FM 3(9%, 10)=10000 × 15, 193=151930 В данной задаче более предпочтительным является план 1, так как в этом случае будущая стоимость денежного потока выше. Если процентная ставка в плане 2 будет снижена до 8%, то будущая стоимость денежного потока будет равна: FV 2 =10000 × FM 3(10%, 10)=10000 × 15, 937=159370 то и в этом случае решение не изменится, то есть выгоднее план 1. Задача 2. Предприниматель в результате инвестирования в некоторый проект будет получать в конце каждого квартала 8 тыс. долл. Определить возможные суммы, которые через три года получит предприниматель, если можно поместить деньги в банк под сложную процентную ставку 24% годовых с ежеквартальным начислением процентов. Решение Используем формулу (9.2), считая базовым периодом квартал, тогда А=8; n =12; r =6% : FV =8 × FM 3(6%, 12)=8 × 16, 8699=134959 Через три года в банке на счете предпринимателя будет 134 959 000 долл. Задача 3. Какую сумму необходимо поместить в банк под сложную процентную ставку 6% годовых, чтобы в течение 6 лет иметь возможность в конце каждого года снимать со счета 100 тыс. руб., исчерпав счет полностью, если банком ежегодно начисляются сложные проценты? Решение Для ответа на поставленный вопрос необходимо определить приведенную стоимость аннуитета постнумерандо. По формуле (9.2) при А =100; r =6%; n =6: PV =100 × FM 4(6%, 6)=100 × 4, 917=491, 7 В банк на счет необходимо положить 491 700 руб. Задача 4. Клиент в конце каждого года вкладывает 300 тыс. руб. в банк, ежегодно начисляющий сложные проценты по ставке 10% годовых. Определить сумму, которая будет на счете через 7 лет. Если эта сумма получается в результате однократного помещения денег в банк, то какой величины должен быть взнос? Решение По формуле (9.1) при A =300; r =10%; n =7: FV =300 × FM 3(10%, 7)=300 × 9, 487=2846, 1. Через 7 лет на счете накопится 2846100 руб. Величину однократного взноса в начале первого года находим по формуле (3.2, Занятие Сложные ссудные ставки) при F =2846, 1; r =10%; n =7: P =2846, 1 × FM 2(10%, 7)=2846, 1∙ 0.51 =1450, 44 Взнос равен 1450440 руб. Задача 5. Фирме предложено инвестировать 200 млн. руб. на срок 4 года при условии возврата этой суммы частями (ежегодно по 50 млн. руб.); по истечении четырех лет будет выплачено дополнительное вознаграждение в размере 25 млн. руб. Примет ли она это предложение, если можно депонировать деньги в банк из расчета 8% годовых? Решение По формуле (3.1) (Занятие Сложные ссудные ставки) при Р=200000; r =0, 08; n =4 определим сумму, которая накопится на счете, если положить деньги в банк: F 1=200 ∙ (1+0, 08)4= 272, 098 По формуле (9.1) при А=50000; r =8%; n =4 определим будущую стоимость аннуитета постнумерандо: FV = 50∙ FM 3(8%, 4)=50∙ 4, 5061= 225, 305 С учетом дополнительного вознаграждения в 25 млн. руб., при условии инвестирования 200 млн., на конец четвертого года на счете фирмы будет сумма, равная F 2=225, 305+25=250, 305 F 1> F 2, поэтому фирме выгодно положить деньги в банк и не принимать данное предложение.
Задачи для подготовки к занятию Задача 1. Предприниматель планирует после выхода на пенсию обеспечить себе ежегодный годовой доход в размере 60 тыс. руб. в течение 8 лет. Какую сумму ему необходимо для этого поместить на депозит в момент выхода на пенсию, если банковская ставка по депозитам будет 10% годовых? Предприниматель планирует снимать денежные средства с депозита в начале каждого года и за 8 лет исчерпать депозит полностью. Задача 2. В начале каждого года в течение 13 лет на счет вносится 130 тыс. рублей, процентная ставка составляет 13% годовых. Определить наращенную сумму через 13 лет. Задача 3. Сумма 75 тыс. рублей вносится в конце каждого года на протяжении 18 лет под 13% годовых. Определить величину накопленного вклада через 18 лет. Задача 4. Найти дисконтированную величину 16 вкладов постнумерандо по 100 тыс. рублей при ставке 14% годовых на текущий момент времени и через 3 года. Задача 5. Найти текущую стоимость суммы 15 вкладов пренумерандо по 75 тыс. рублей при ставке 20% годовых. Задача 6. Какую сумму необходимо поместить в банк под сложную процентную ставку 10% годовых, чтобы в течение 12 лет иметь возможность в конце каждого года снимать со счета 120 тыс. руб., исчерпав счет полностью, если банком ежегодно начисляются сложные проценты?
Задание на практическое занятие 9. Финансовые ренты Контрольные вопросы 1. Какой денежный поток называется потоком пренумерандо? Приведите пример. 2. Какой денежный поток называется потоком постнумерандо? Приведите пример. 3. Как используются финансовые таблицы для оценки постоянных аннуитетов? 4. Чему равен коэффициент наращения аннуитета? 5. Чему равен коэффициент дисконтирования аннуитета? 6. Какая связь существует между будущей и приведенной стоимостями аннуитета?
Задача 1. Страховая компания заключила договор с предприятием на 5 лет, установив ежемесячный страховой взнос в сумме 500 тыс. руб.. Страховые взносы помещаются в банк под сложную процентную ставку 10 % годовых, начисляемую ежемесячно. Определите сумму, которую получит по данному контракту страховая компания. Задача 2. Анализируются два плана накопления денежных средств по схеме аннуитета пренумерандо: 1) класть на депозит 100 тыс. руб. каждый квартал при условии, что банк начисляет сложные проценты по ставке 8% с ежеквартальным начислением процентов; 2) делать ежегодный вклад в размере 420 тыс. руб. при условии, что банк ежегодно начисляет сложные проценты по ставке 7%. Какая сумма будет на счете через 5 лет при реализации каждого плана? Задача 3. Преуспевающий предприниматель в знак уважения к своей школе намерен заключить договор со страховой компанией, согласно которому компания ежегодно будет выплачивать школе сумму в 500 тыс. руб. от имени предпринимателя в течение 20 лет. Какой единовременный взнос должен сделать предприниматель, если банковская ставка по вкладам равна 5% годовых? Задача 4. Банк предлагает ренту постнумерандо на 15 лет с полугодовой выплатой 100 тыс. руб. Годовая процентная ставка 9% в течение всего периода остается постоянной, сложные проценты начисляются по полугодиям. По какой цене имеет смысл приобретать эту ренту? Задача 5. В начале каждого года вы вкладываете 500 тыс. руб. в банк, ежегодно начисляющий сложные проценты по ставке 9 % годовых. Определить сумму, которая накопится на счете через 5 лет. Если эта сумма получается в результате однократного помещения денег в банк, то какой величины должен быть взнос? Задача 6. От сдачи в аренду здания предприниматель получает в конце каждого квартала доход в размере 5 тыс. долл., которые он переводит на депозит в банк. Какая сумма будет получена арендодателем в банке в конце года, если банковская ставка по депозитам равна 8% годовых, начисляемых ежеквартально? Занятие 10. Определение параметров ренты
Постоянный аннуитет (финансовая рента) описывается набором основных параметров – платеж аннуитета, процентная ставка, срок действия аннуитета. Зная эти параметры, можно решать прямую и обратную задачи оценки аннуитета - определить его будущую и приведенную стоимость. При разработке финансовых контрактов и условий финансовых операций могут возникнуть случаи, когда задаются будущая или приведенная стоимость ренты, и необходимо рассчитать значения ее параметров. Цель проведения занятия – научиться определять параметры аннуитетов, используя формулы финансовых вычислений.
Основные формулы
(10.1)
(10.2) (10.3) (10.4) (10.5) (10.6) Типовые задачи с решениями Задача 1. Работник заключает с фирмой контракт, согласно которому в случае его постоянной работы на фирме до выхода на пенсию (в 60 лет) фирма обязуется в начале каждого года перечислять на счет работника в банке одинаковые суммы, которые обеспечат работнику после выхода на пенсию в конце каждого года дополнительные выплаты в размере 30 00 руб. в течение 10 лет. Какую сумму ежегодно должна перечислять фирма, если работнику 40 лет и предполагается, что банк гарантирует годовую процентную ставку 10%? Решение Выплаты работнику после выхода на пенсию представляют собой аннуитет постнумерандо. По формуле (10.2) при A =30 000; r =10%; n =10 найдем приведенную стоимость этого аннуитета: PV =30000 × FM 4(10%, 10) =30 000 × 6, 145 = 184350 Таким образом, если иметь на счете в момент выхода на пенсию 184 350 руб. можно ежегодно снимать с него 30 000 руб. и через 10 лет исчерпать счет полностью. Теперь необходимо выяснить, какую сумму фирма должна в начале года перечислять на счет работника, чтобы за 20 лет ( 60 – 40 = 20) накопить 184350 руб. Размер вклада можно найти из формулы (11.1), полагая FV pre =184350: A =184350 / [ FM 3(10%, 20) (1+ r )] =184350/(57, 274 × 1, 1)= 2926, 125 Таким образом, фирме достаточно перечислять на счет работника 2916 руб.13 коп. Задача 2. Иванов должен Петрову 200 тыс. руб. Он предлагает вернуть долг равными ежегодными платежами в 50 тыс. руб. Через какое время долг будет погашен, если на него ежегодно начисляются сложные проценты по ставке 12% годовых? Решение По формуле (11.4) при А=50; r =0, 12; PVpst =200 n =5, 77
Долг будет погашен через 5, 77 года Задача 3. Господин Х выплатил жене при разводе 1 млн. руб. Жена после развода планирует получать ежегодно одинаковые суммы в течение 20 лет. Какую сумму она будет получать, при условии, что процентная ставка по вкладам в банк равна 10% годовых? Решение 1 млн. руб. – это приведенная стоимость срочной ренты постнумерандо, срок ренты- 20 лет, выплаты по ренте – ежемесячные. Величину неизвестного платежа находим из формулы (11.2) при PV =1 000 000; n =20; r =0, 1
A =1 000 000/ FM 4(10%, 20) A =1 000 000/ 8, 5136= 117 459, 1 Ежегодно жена будет получать 117 459 руб.10 коп. Задача 4. Некоторая фирма хочет создать фонд в размере 3500 тыс. руб. С этой целью в конце каждого года фирма предполагает вносить по 600 тыс. руб. в банк под 8% годовых. Найти срок, необходимый для создания фонда, если банк начисляет сложные проценты ежегодно. Решение По формуле (10.3) при FV =3500; A =600; r =0, 08: n =4, 976443
Для создания фонда потребуется 5 лет. Задачи для подготовки к занятию Задача 1. Индивидуальный предприниматель погашает кредит равными ежемесячными платежами в 100 тыс. руб. в течение 3 лет. Банк согласился уменьшить платежи до 80 тыс. руб. Насколько увеличится срок погашения кредита, если банк использует сложную ставку 12% годовых с ежемесячным начислением процентов? Задача 2. Задолженность в сумме 500 тыс. руб. погашается в течение 3 лет равными ежемесячными платежами. Определить размер платежа, в расчетах использовать ставку 8% годовых с ежеквартальным начислением процентов. Задача 3. Семьяпланируетнакопить на отпуск 200 тыс. руб.. Для этого в начале каждого месяца в банк на депозит вносится одинаковая сумма. Определить размер ежемесячного взноса, если банковская ставка по депозитам равна 8% годовых с полугодовым начислением процентов. Задача 4. Предприятие намеревается за 2 года создать фонд развития в сумме 5 млн. руб. Какую сумму предприятие должно ежемесячно ассигновать на эти цели при условии помещения этих денег в банк под сложную процентную ставку 8% годовых с ежемесячным начислением процентов? Какой единовременный вклад в начале первого года нужно было бы сделать для создания фонда?
Задание на практическое занятие 10. Определение параметров финансовых рент. Контрольные вопросы 1. Как изменяется коэффициент наращения аннуитета при изменении срока действия аннуитета и изменении процентной ставки? 2. Как изменяется коэффициент дисконтирования аннуитета при изменении срока действия аннуитета и изменении процентной ставки? 3. Какая связь существует между оценками аннуитета пренумерандо и постнумерандо?
Задача 1. Предприниматель инвестировал 700 000 руб. в пенсионный контракт. На основе анализа таблиц смертности страховая компания предложила условия, согласно которым определенная сумма будет выплачиваться ежегодно в течение 20 лет исходя из ставки 15% годовых. Какую сумму ежегодно будет получать предприниматель? Задача 2. К моменту выхода на пенсию через 10 лет предприниматель хочет иметь на счете 300 000 руб. Для этого намерен делать ежегодный взнос по схеме пренумерандо. Определите размер взноса, если банковская ставка по депозитам составляет 7% годовых. Задача 3. Какой срок необходим для того, чтобы на депозите накопилось 10 млн. руб., при условии, что на ежегодные взносы в сумме 1 млн. руб. начисляются сложные проценты по ставке 9% годовых? Взносы на депозит делаются в начале каждого года. Как изменится срок, если взносы на депозит будут в конце каждого года. Задача 4. Необходимо найти размер равных взносов в конце года для следующих двух ситуаций, каждая из которых предусматривает начисление сложных процентов по ставке 8% годовых: 1) создать за 5 лет резервный фонд в сумме 1 млн. руб. 2) погасить через 5 лет текущую задолженность в сумме 1 млн. руб. Задача 5. Работник заключает с фирмой контракт, согласно которому фирма обеспечит работнику после выхода на пенсию в конце каждого года дополнительные выплаты в размере 8000 руб. в течение 18 лет. Какую сумму ежегодно фирма должна перечислять на банковский счет работника, если работнику 30 лет, выход на пенсию – в 60 лет и предполагается, что банк гарантирует годовую процентную ставку 10% годовых? Задача 6. Владелец малого предприятия планирует за три года создать фонд развития в сумме 1, 5 млн. руб. Он рассматривает следующие возможности для создания фонда с помощью банковского депозита, на который начисляются сложные проценты по ставке 12% годовых: 1) делать ежегодные равные взносы на депозит; 2) сделать разовый платеж. Определить размеры сумм в каждом варианте. |
Последнее изменение этой страницы: 2020-02-16; Просмотров: 920; Нарушение авторского права страницы