Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Результаты расчета динамики гидропривода валков подающих



 

Результаты расчета динамики гидропривода валков подающих показаны на рисунках 5 – 13

На рис. 5 показан расход масла перед гидромотором. На рис 6 показан расход масла после гидромотора. На рис. 7 показано давление масла перед гидромотором. На рис. 8 показано давление масла после гидромотора. На рис. 9 показана угловая скорость гидромотора. На рис. 10 показан угол поворота гидромотора. На рис. 11 показана нагрузка на гидромоторе. На рис. 12 показан расход после насоса. На рис. 13 показано давление после насоса

 

Q, м3

 t, c

Рисунок 5 – Расход масла перед гидромотором

Q, м3

 t, c

Рисунок 6 – Расход масла после гидромотора

Р, Па

 t, c

Рисунок 7 – Давление перед гидромотором Р, Па

 t, c

Рисунок 8 – Давление после гидромотора w, с-1

 

 t, c

Рисунок 9 – Угловая скорость гидромотора j, рад

 t, c

Рисунок 10 – Угол поворота гидромотора

 

М, Нм

 t, c

Рисунок 11 – Нагрузка на гидромоторе Q, м3

 t, c

Рисунок 12 – Расход после насоса Р, Па

 

 t, c

Рисунок 13 – Давление после насоса


Максимальная нагрузка на гидромотор при вращении гидромотора привода валков подающих составляет 329 Нм. В динамических расчетах принимаем изменение нагрузки по циклограмме, показанной на рисунке 11. Нагрузка на гидромоторе плавно нарастает за время от 0 с до 2 с от 0 до 329 Нм. В дальнейшем нагрузка остается постоянной – 329 Нм. Через 5 секунд после начала расчета мы моделируем плавное возрастание момента нагрузки до 370 Нм. Такое значение момента сохраняется до 6, 5 секунд и затем плавно уменьшается до 329 Нм.

В начале расчета после запуска привода расход насоса начинает расти. Мы устанавливаем такое значение параметра регулирования насоса, чтобы обеспечить заданную частоту вращения 120 об/мин (12, 6 с-1). На рисунке 12 видно, что при работе привода расход насоса уменьшается. Часть расхода тратится на утечки в насосе. Они описаны в программе объемным КПД насоса.

Масло от регулируемого насоса поступает через фильтр к обратному клапану. Предохранительный клапан настроен на давление 16 МПа.

Далее масло поступает к распределителю масло и к гидромотору.

Позиция гидрораспределителя в программе задается постоянной.

Давление на выходе из насоса на рисунке 13 и перед гидромотором на рисунке 4 начинает расти. Сначала давления растут быстро до величины 2, 5 МПа. В это время гидромотор вращается медленно. Постепенно частота вращения гидромотора увеличивается и рост давления замедляется. Расчетному значению момента нагрузки на валу гидромотора соответствует давление 11 МПа. При увеличении нагрузки давление в линии его питания и после насоса плавно возрастает до 12, 2 МПа и затем уменьшается до 11 МПа.

Давление на сливе гидромотора показано на рисунке 8. Его величина определяется настройкой клапана давления и за все время расчета остается практически постоянной и равной 2 МПа.

Предохранительный клапан не открывается, так как он настроен на давление 16 МПа.

Угловая скорость гидромотора на рисунке 6 тесно связана с расходом гидромотора на рисунке 5.

В начале вращения гидромотора нагрузка на него определяется моментом трения в его подвижных частях, который задается в программе. В это время его вал начинает быстро вращаться и угловая скорость достигает 18 с-1. Это вызывает рост расхода до 7, 1× 10-4 м3/с, который на какое-то время становится больше подачи насоса 6× 10-4 м3/с. В дальнейшем угловая скорость уменьшается до 12 с-1 и наконец устанавливается на значении 13, 2 с-1.

Изменение нагрузки вызывает кратковременное изменение угловой скорости гидромотора. Но потом она становится равной 13, 2 с-1.

Расход после гидромотора на рисунке 6 меньше расхода перед гидромотором на рисунке 5. Часть расхода тратится на утечки в моторе. Утечки описаны в программе объемным КПД мотора.

На рисунках 5 – 13 видно, что переходные процессы при разгоне гидромотора привода валков подающих и при изменении нагрузки носит затухающий характер. Это позволяет сделать вывод об устойчивости системы гидропривода валков подающих.

Время выхода гидромотора на установившийся режим работы – 2, 1 с.


ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

4.1 Служебное назначение, конструкция гидравлического цилиндра и технологические требования к нему

Гидравлический цилиндр – гидравлическая машина, предназначенная для преобразования энергии потока рабочей жидкости в энергию движения выходного звена, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении его из рабочей камеры. На рисунке 5.1 показана конструкция гидроцилиндра.

 

Рисунок 14 – Конструкция гидравлического цилиндра

Гидроцилиндр состоит из: цилиндра (1), плунжера (2), втулки (3, 6), кольца (4), кольца фторопластового (5), крышки (7), шайбы (8) и болта (9).

Технические требования к цилиндру: не допускается овальность и конусность цилиндрических поверхностей, их относительное смещение должно составлять не более половины допуска на размер; давление, необходимое для перемещения штока в крайнее правое положение равно 0, 5МПа; рабочий ход штока: 700±1мм; рабочее давление изменяется ступенчато от 0, 8 до 18МПа.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 155; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь