Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Как вычислить определенный интеграл по формуле Симпсона?



Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.

И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

На практике отрезков может быть:
два:
четыре:
восемь:
десять:
двадцать:
Другие варианты не припоминаю.

Внимание! Число понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например, на два, получая . Запись лишь обозначает, что количество отрезков чётно. И ни о каких сокращениях речи не идёт

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки называют узлами.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
, где:
– длина каждого из маленьких отрезков или шаг;
– значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётными индексами умножается на 2;
– сумма членов с нечётными индексами умножается на 4.

Пример 4

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0, 001. Разбиение начать с двух отрезков

Интеграл, кстати, опять неберущийся.

Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью. Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.

Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше: . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0, 001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

Таким образом:

Найдём абсолютное значение разности между приближениями:

Правило Рунге для метода Симпсона очень вкусное. Если при использовании метода средних прямоугольников и метода трапеций нам даётся «поблажка» в одну треть, то сейчас – аж в одну пятнадцатую:
, и точность здесь уже не страдает:

Но для полноты картины я приведу и «простецкое» решение, где придётся сделать дополнительный шаг: так как больше требуемой точности: , то необходимо еще раз удвоить количество отрезков: .

Формула Симпсона растёт, как на дрожжах:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:

Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ: с точностью до 0, 001

Пример 5

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0, 0001. Разбиение начать с двух отрезков

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока.

В заключительной части урока рассмотрим еще пару распространенных примеров

Пример 6

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Вычисления проводить с точностью до третьего знака после запятой.

Решение: обратите внимание, что здесь следует провести лишь округление, а уж насколько точным окажется приближение – совершенно не важно.

Используем формулу Симпсона:

При десяти отрезках разбиения шаг составляет

Заполним расчетную таблицу:

Чтобы не пришлось «мельчить» и всё разборчиво вместилось на тетрадный лист – таблицу рациональнее сделать двухэтажной.

Вычисления, не ленимся, расписываем подробно:

Ответ:

И еще раз подчеркну, что о точности здесь речи не идет. На самом деле, ответ может быть не , а, условно говоря, . В этой связи в ответе не нужно машинально приписывать «дежурную» концовку: «с точностью до 0, 001».

 

Несобственные интегралы. Примеры решений

 

К изучению несобственных интегралов лучше приступать в последнюю очередь в ходе изучения интегрального исчисления функции одной переменной. Читатель данного урока должен быть хорошо подкован в неопределенных интегралах, определенных интегралах, уметь находить площадь плоской фигуры с помощью определенного интеграла. Кроме того, потребуются знания простейших пределов и графиков элементарных функций. По логике изложения материала эта статья является продолжением урока Определенный интеграл. Как вычислить площадь фигуры.

Вы еще здесь? =) Нет, я никого не пытался запугать, просто тема несобственных интегралов – очень хорошая иллюстрация тому, как важно не запускать высшую математику и другие точные науки. Для освоения урока на сайте всё есть – в подробной и доступной форме, было бы желание….

Итак, начнем-с. Образно говоря, несобственный интеграл – это «продвинутый» определенный интеграл, и на самом деле сложностей с ними не так уж и много, к тому же у несобственного интеграла есть очень хороший геометрический смысл.


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 146; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь