Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
DFD - диаграмма потоков данных
Общие положения DFD — общепринятое сокращение от англ. Data Flow Diagrams — диаграммы потоков данных. Так называется методология графического структурного анализа, описывающая внешние по отношению к системе источники и адресаты данных, логические функции, потоки данных и хранилища данных, к которым осуществляется доступ. Диаграмма потоков данных (data flow diagram, DFD)(Рис.2.1.) — один из основных инструментов структурного анализа и проектирования информационных систем, существовавших до широкого распространения UML. Несмотря на имеющее место в современных условиях смещение акцентов от структурного к объектно-ориентированному подходу к анализу и проектированию систем, «старинные» структурные нотации по-прежнему широко и эффективно используются как в бизнес-анализе, так и в анализе информационных систем. Рис.2.1. Диаграмма потоков данных. Исторически сложилось так, что для описания диаграмм DFD используются две нотации — Йодана (Yourdon) и Гейна-Сарсона (Gane-Sarson), отличающиеся синтаксисом. На приведенной ниже иллюстрации использована нотация Гейна-Сарсона. Информационная система принимает извне потоки данных. Для обозначения элементов среды функционирования системы используется понятие внешней сущности. Внутри системы существуют процессы преобразования информации, порождающие новые потоки данных. Потоки данных могут поступать на вход к другим процессам, помещаться (и извлекаться) в накопители данных, передаваться к внешним сущностям. Модель DFD, как и большинство других структурных моделей — иерархическая модель. Каждый процесс может быть подвергнут декомпозиции, то есть разбиению на структурные составляющие, отношения между которыми в той же нотации могут быть показаны на отдельной диаграмме. Когда достигнута требуемая глубина декомпозиции — процесс нижнего уровня сопровождается мини-спецификацией (текстовым описанием). Кроме того, нотация DFD поддерживает понятие подсистемы — структурной компоненты разрабатываемой системы. Нотация DFD — удобное средство для формирования контекстной диаграммы, то есть диаграммы, показывающей разрабатываемую АИС в коммуникации с внешней средой. Это — диаграмма верхнего уровня в иерархии диаграмм DFD. Ее назначение — ограничить рамки системы, определить, где заканчивается разрабатываемая система и начинается среда. Другие нотации, часто используемые при формировании контекстной диаграммы — диаграмма SADT, диаграмма Диаграмма вариантов использования. Для решения задачи функционального моделирования на базе структурного анализа традиционно применяются два типа моделей: IDEF0-диаграммы и диаграммы потоков данных. Методология разработки процессных диаграмм обычно применяется при проведении обследований предприятий в рамках проектов управленческого консалтинга, а также в проектах автоматизации крупных объектов при экспресс-обследовании (обычно для составления развернутого плана работ). Нотация диаграмм потоков данных позволяет отображать на диаграмме как шаги бизнес-процесса, так и поток документов и управления (в основном, управления, поскольку на верхнем уровне описания процессных областей значение имеет передача управления). Также на диаграмме можно отображать средства автоматизации шагов бизнес-процессов. Обычно используется для отображения третьего и ниже уровня декомпозиции бизнес-процессов (первым уровнем считается идентифицированный перечень бизнес-процессов, а вторым - функции, выполняемые в рамках бизнес-процессов). Диаграммы потоков данных (Data flow diagramming, DFD): · являются основным средством моделирования функциональных требований к проектируемой системе; · создаются для моделирования существующего процесса движения информации; · используются для описания документооборота, обработки информации; · применяются как дополнение к модели IDEFO для более наглядного отображения текущих операций документооборота (обмена информацией); · обеспечивают проведение анализа и определения основных направлений реинжиниринга ИС. Диаграммы DFD могут дополнить то, что уже отражено в модели IDEF0, поскольку они описывают потоки данных, позволяя проследить, каким образом происходит обмен информацией как внутри системы между бизнес-функциями, так и системы в целом с внешней информационной средой В случае наличия в моделируемой системе программной/программируемой части (практически всегда) предпочтение, как правило, отдается DFD по следующим соображениям. 1. DFD-диаграммы создавались как средство проектирования программных систем, тогда как IDEF0 - как средство проектирования систем вообще, поэтому DFD имеют более богатый набор элементов, адекватно отражающих их специфику (например, хранилища данных являются прообразами файлов или баз данных). 2. Наличие мини-спецификаций DFD-процессов нижнего уровня позволяет преодолеть логическую незавершенность IDEF0, а именно обрыв модели на некотором достаточно низком уровне, когда дальнейшая ее детализация становится бессмысленной, и построить полную функциональную спецификацию разрабатываемой системы. 3. Существуют и поддерживаются рядом CASE-инструментов алгоритмы автоматического преобразования иерархии DFD в структурные карты, демонстрирующие межсистемные и внутрисистемные связи, а также иерархию систем, что в совокупности с мини-спецификациями является завершенным заданием для программиста. С помощью DFD-диаграмм требования к проектируемой ИС разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель декомпозиции DFD-функций - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами. На схемах бизнес-процесса отображаются: · функции процесса; · входящая и исходящая информация, при описании документов; · внешние бизнес-процессы, описанные на других диаграммах; · точки разрыва при переходе процесса на другие страницы. Если при моделировании по методологии IDEF0 система рассматривается как сеть взаимосвязанных функций, то при создании DFD-диаграммы система рассматривается как сеть связанных между собой функций, т.е. как совокупность сущностей (предметов). Структурный анализ - это системный пошаговый подход к анализу требований и проектированию спецификаций системы независимо от того, является ли она существующей или создается вновь. Методологии Гейна-Сарсона (Gane-Sarson) и Йордана/Де Марко (Yourdon/DeMarko) построения диаграмм потоков данных, основанные на идее нисходящей иерархической организации, наиболее ярко демонстрируют этот подход. Целью этих двух методологий является преобразование общих, неясных знаний о требованиях к системе в точные (насколько это возможно) определения. Обе методологии фокусируют внимание на потоках данных, их главное назначение - создание базированных на графике документов по функциональным требованиям. Методологии поддерживаются традиционными нисходящими методами проектирования и обеспечивают один из лучших способов связи между аналитиками, разработчиками и пользователями системы за счет интеграции следующих средств: · Диаграмм потоков данных. · Словарей данных, которые являются каталогами всех элементов данных, присутствующих в DFD, включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты. · Миниспецификации обработки, описывающие DFD-процессы нижнего уровня и являющиеся базой для кодогенерации. Миниспецификация. Миниспецификация - это алгоритм описания задач, выполняемых процессами, множество всех миниспецификации является полной спецификацией системы. Миниспецификации содержат номер и/или имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Известно большое число разнообразных методов, позволяющих задать тело процесса, соответствующий язык может варьироваться от структурированного естественного языка или псевдокода до визуальных языков проектирования (типа FLOW-форм и диаграмм Насси--Шнейдермана) и формальных компьютерных языков. Проектные спецификации строятся по DFD и их миниспецификациям автоматически. Наиболее часто для описания проектных спецификаций используется методика структурных карт Джексона, иллюстрирующая иерархию модулей, связи между ними и некоторую информацию об их исполнении (последовательность вызовов, итерацию). Существует ряд методов автоматического преобразования DFD в структурные карты. Главной отличительной чертой методологии Гейна-Сарсона является наличие этапа моделирования данных, определяющего содержимое хранилищ данных (БД и файлов) в DFD в третьей нормальной форме. Этот этап включает построение списка элементов данных, располагающихся в каждом хранилище данных; анализ отношений между данными и построение соответствующей диаграммы связей между элементами данных; представление всей информации по модели в виде связанных нормализованных таблиц. Кроме того, методологии отличаются чисто синтаксическими аспектами, так, например различны графические символы, представляющие компоненты DFD. Рассматриваемые методы представляют собой методы, помогающими от чистого листа бумаги или экрана перейти к хорошо организованной модели системы. Обе методологии основаны на простой концепции нисходящего поэтапного разбиения функций системы на подфункции: На первом этапе формируется контекстная диаграмма верхнего уровня, идентифицирующая границы системы и определяющая интерфейсы между системой и окружением. После интервьюирования эксперта предметной области, формируется список внешних событий, на которые система должна реагировать. Для каждого из таких событий строится пустой процесс (bubble) в предположении, что его функция обеспечивает требуемую реакцию на это событие, которая в большинстве случаев включает генерацию выходных потоков и событий (но может также включать и занесение информации в хранилище данных для ее использования другими событиями и процессами). На следующем уровне детализации аналогичная деятельность осуществляется для каждого из пустых процессов. Для усиления функциональности в данной нотации диаграмм предусмотрены специфические элементы, предназначенные для описания информационных и документопотоков, такие как внешние сущности и хранилища данных. Основные символы DFD-диаграмм по этим нотациям: Рис. 3.1. Основные символы DFD-диаграмм Помимо нотации Йордона/Де Марко и Гейна - Сарсона для элементов DFD-диаграм могут использоваться и другие условные обозначения (OMT, SSADM, и т.д.). Все они обладают практически одинаковой функциональностью и различаются лишь в деталях. Несмотря на то, что методология IDEF0 получила широкое распространение, по мнению многих аналитиков DFD гораздо больше подходит для проектирования информационных систем вообще и баз данных в частности. DFD позволяет уже на стадии функционального моделирования определить базовые требования к данным (этому способствует разделение потоков данных на материальные, информационные и управляющие). Кроме того интеграция DFD-моделей и ER-моделей (entity-relationship, " сущность-связь" ) не вызывает затруднений. Например, можно определить список атрибутов хранилищ данных, последние на стадии информационного моделирования однозначно отображаются в сущности модели " сущность- связь". В свою очередь, как уже отмечалось, IDEF0 больше подходит для решения задач, связанных с управленческим консультированием (реинжинирингом процессов). Этому способствует также тесная связь IDEF0 с методом функционально - стоимостного анализа ABC (Activity Based Costing), позволяющим определить схему расчета стоимости выполнения той или иной деловой процедуры. Однако, существует ряд CASE - систем, предлагающих методологию IDEF0 на этапе функционального обследования предметной области. В таких системах на следующий этап передается просто список всех объектов IDEF0-модели (входы, выходы, механизмы, управление), которые затем рассматриваются на предмет включения в информационную модель. 2.2.4.3. Терминология DFD-нотации. DFD-БЛОКИ – графическое изображение операции (процесса, функции, работы) по обработке или преобразованию информации (данных). Смысл DFD-блока, отображающего функцию совпадает со смыслом блоков IDEFO и IDEF3, заключающиеся в преобразовании входов в выходы. DFD-блоки также имеют входы и выходы, но не поддерживают управление и механизмы, как IDEFO. Назначение функции состоит в создании из входных потоков выходных в соответствии с действием, определяемым именем процесса. Поэтому имя функции должно содержать глагол в неопределенной форме с последующим дополнением. Функции обычно именуются по названию системы, например " Разработка системы автоматизированного проектирования''. Рекомендуется использовать глаголы, отображающие динамические отношения, например: «рассчитать», «получить», «заказать», «фрезеровать», «точить», «вычислить», «включить», «моделировать» и т.д. Если автор использует такие глаголы, как “обработать”, “модернизировать”, или “отредактировать”, то это означает, что он, вероятно, пока недостаточно глубоко понимает данную функцию процесса и требуется дальнейший анализ. По нотации Гейн-Сарсона DFD-блок изображается прямоугольником со скругленными углами. Каждый блок должен иметь уникальный номер для ссылки на него внутри диаграммы. Номер каждого блока может включать префикс, номер родительского блока (А) и номер объекта, представляющий собой уникальный номер блока на диаграмме. Например, функция может иметь номер А.12.4. Для того чтобы избежать пересечений линий потоков данных один и тот же элемент может на одной и той же диаграмме отображаться несколько раз; в таком случае два или более прямоугольника, обозначающих один и тот же элемент, могут идентифицироваться линией перечеркивающей нижний правый угол. DATA FLOW (поток данных) – механизм, использующийся для моделирования передачи информации между участниками процесса информационного обмена (функциями, хранилищами данных, внешними ссылками). По нотации Гейн-Сарсона поток данных (документы, объекты, сотрудники, отделы или иные участники обработки информации) изображается стрелкой между двумя объектами DFD-диаграммы, предпочтительно горизонтальной и/или вертикальной, причем направление стрелки указывает направление потока. Каждая стрелка должна иметь источник и цель. В отличие от стрелок IDEF0-диаграммы (ICOM), стрелки DFD могут входить или выходить из любой стороны блока. Стрелки описывают, как объекты (включая данные) двигаются из одной части системы в другую. Поскольку в DFD каждая сторона блока не имеет четкого назначения, в отличие от блоков IDEF0-диаграммы, стрелки могут подходить и выходить из любой грани. В DFD-диаграммах для описания диалогов типа команды-ответа между операциями, применяются двунаправленные стрелки между функцией и внешней сущностью и/или между внешними сущностями. Стрелки могут сливаться и разветвляться, что позволяет описать декомпозицию стрелок. Каждый новый сегмент сливающейся или разветвляющейся стрелки может иметь собственное имя. Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться обратно. Такая ситуация может моделироваться либо двумя различными потоками, либо одним двунаправленным. На поток данных можно ссылаться, указывая процессы, сущности или накопители данных, которые поток соединяет. Каждый поток должен иметь имя, расположенное вдоль или над стрелкой, выбранное таким образом, чтобы в наибольшей степени передавать смысл содержания потока пользователям, которые будут рассматривать диаграмму потоков данных. Набрасывая диаграмму потоков данных, можно опустить наименования, если оно является очевидным для пользователя, но автор диаграммы должен в любой момент представить описание потока. DATA FLOW ДИАГРАММА (DFD-диаграмма) (Рис.4.1.)– диаграммы применяемые для графического представления (flowchart) движения и обработки информации в организации или в каком-либо процессе. Обычно диаграммы этого типа используются для проведения анализа организации информационных потоков и для разработки ИС. DFD-диаграммы являются ключевой частью документа спецификации требований - графическими иерархическими спецификациями, описывающими систему с позиций потоков данных. Каждый узел-процесс в DFD может развертываться в диаграмму нижнего уровня, что позволяет на любом уровне абстрагироваться от деталей. Рис.4.1. Пример DFD- диаграммы потоков данных. Для диаграмм этого типа обычно применяется сокращенное обозначение DFD. DFD являются. В состав DFD могут входить четыре графических символа, представляющих потоки данных, процессы преобразования входных потоков данных в выходные, внешние источники и получатели данных, а также файлы и БД, требуемые процессами для своих операций. DFD-диаграммы моделируют функции, которые система должна выполнять, но почти ничего не сообщают об отношениях между данными, а также о поведении системы в зависимости от времени - для этих целей используются диаграммы сущность-связь и диаграммы переходов состояний, соответственно. DATA STORE (хранилище данных)(Рис.4.2.) – графическое представление потоков данных импортируемых/экспортируемых из соответствующих баз данных. Обычно это таблицы для хранения документов. В отличие от стрелок, описывающих объекты в движении, хранилища данных изображают объекты в покое. Накопители данных являются неким прообразом базы данных информационной системы организации. Хранилища данных включаются в модель системы в том случае, если имеются этапы технологического цикла, на которых появляются данные, которые необходимо сохранять в памяти. При отображении процесса сохранения данных стрелка потока данных направляется в хранилище данных, и, наоборот – из хранилища, если идет импорт данных. Рис.4.2. Хранилище данных. Хранилища данных предназначены для изображения неких абстрактных устройств для хранения информации, которую можно туда в любой момент времени поместить или извлечь, безотносительно к их конкретной физической реализации. Хранилища данных используются: в материальных системах - там, где объекты ожидают обработки, например в очереди; в системах обработки информации для моделирования механизмов сохранения данных для дальнейших операций. По нотации Гейн-Сарсона хранилище данных обозначается двумя горизонтальными линиями, замкнутыми с одного края. Каждое хранилище данных должно идентифицироваться для ссылки буквой D и произвольным числом в квадрате с левой стороны, например D5. Имя должно подбираться с учетом наибольшей информативности для пользователя. В модели может быть создано множество вхождений хранилищ данных, каждое из которых может иметь одинаковое имя и ссылочный номер. Для того, чтобы не усложнять диаграмму потоков данных пересечениями линий, можно изображать дубликаты накопителя данных дополнительными вертикальными линиями с левой стороны квадрата. EXTERNAL REFERENCE (внешняя ссылка, внешняя сущность, external entities) (Рис.4.3.)– объект диаграммы потоков данных, являющийся источником или приемником информации извне модели. Внешние ссылки/сущности изображают входы и/или выходы, т.е. обеспечивают интерфейс с внешними объектами, находящимися вне моделируемой системы. Внешними ссылками системы обычно являются логические классы предметов или людей, представляющие собой источник или приемник сообщений, например, заказчики, конструкторы, технологи, производственные службы, кладовщики и т.д. Это могут быть специфические источники, такие, как бухгалтерия, информационно-поисковая система, служба нормоконтроля, склад. Если рассматриваемая система принимает данные от другой системы или передает данные в другую систему, то эта другая система является элементом внешней системы. Без объекта «внешняя сущность» аналитику бывает иногда сложно определить, откуда пришла в компанию данные документы. Или какие документы еще приходят от, такой внешней сущности как, например, " клиент". Рис.4.3. Внешняя сущность. По нотации Гейн-Сарсона пиктограмма внешней ссылки представляет собой оттененный прямоугольник верхняя и левая сторона, которого имеет двойную толщину для того, чтобы можно было выделить этот символ среди других обозначений на диаграмме, и обычно располагается на границах диаграммы. Внешняя ссылка может идентифицироваться строчной буквой Е в левом верхнем углу и уникальным номером, например Е5. Кроме того, внешняя ссылка имеет имя. Одна и та же внешняя ссылка может быть использована многократно на одной или нескольких диаграммах. Обычно такой прием используют, чтобы не рисовать слишком длинных и запутанных стрелок. Каждая внешняя сущность имеет префикс. При рассмотрении системы как внешней функции, часто указывается, что она находится за пределами границ, моделируемой системы. После проведения анализа некоторые внешние ссылки могут быть перемещены внутрь диаграммы потоков данных рассматриваемой системы или, наоборот, какая-то часть функций системы может быть вынесена и рассмотрена как внешняя ссылка. OFF-PAGE REFERENCE (межстраничные ссылки) – инструмент нотации DFD, описывающий передачу данных или объектов с одной диаграммы модели на другую. Стрелка межстраничной стрелки имеет идентифицирующее имя, номер и изображение окружности. При интерпретации DFD-диаграммы используются следующие правила: · функции преобразуют входящие потоки данных в выходящие; · хранилища данных не изменяют потоки данных, а служат только для хранения поступающих объектов; · преобразования потоков данных во внешних ссылках игнорируется. Помимо этого, для каждого информационного потока и хранилища определяются связанные с ними элементы данных. Каждому элементу данных присваивается имя, также для него может быть указан тип данных и формат. Именно эта информация является исходной на следующем этапе проектирования - построении модели " сущность-связь". При этом, как правило, информационные хранилища преобразуются в сущности, проектировщику остается только решить вопрос с использованием элементов данных, не связанных с хранилищами. Представление потоков в виде стрелок совместно с хранилищами данных и внешними сущностями делает модели DFD более похожими на физические характеристики системы - движение объектов, хранение объектов, поставка и распространение объектов. Построение диаграмм. Диаграммы DFD могут быть построены с использованием традиционного структурного анализа, подобно тому, как строятся диаграммы IDEFO: · строится физическая модель, отображающая текущее состояние дел; · полученная модель преобразуется в логическую модель, которая отображает требования к существующей системе; · строится модель, отображающая требования к будущей системе; · строится физическая модель, на основе которой должна быть построена новая система. Альтернативным подходом является подход, применяемый при создании программного обеспечения, называемый событийным разделением (event partitioning), в котором различные диаграммы DFD выстраивают модель системы: · логическая модель строится как совокупность процессов и документирования того, что эти процессы должны делать; · с помощью модели окружения система описывается как взаимодействующий с событиями из внешних сущностей объект. Модель окружения (environment model) обычно содержит описание цели системы, одну контекстную диаграмму и список событий. Контекстная диаграмма содержит один блок, изображающий систему в целом, внешние сущности, с которыми система взаимодействует, ссылки и некоторые стрелки, импортированные из диаграмм IDEF0 и DFD. Включение внешних ссылок в контекстную диаграмму не отменяет требования методологии четко определить цель, область и единую точку зрения на моделируемую систему; · модель поведения (behavior model) показывает, как система обрабатывает события. Эта модель состоит из одной диаграммы, в которой каждый блок изображает каждое событие из модели окружения, могут быть добавлены хранилища для моделирования данных, которые необходимо запоминать между событиями. Потоки добавляются для связи с другими элементами, и диаграмма проверяется с точки зрения соответствия модели окружения. Полученные диаграммы могут быть преобразованы с целью более наглядного представления системы, в частности могут быть декомпозированы функции. Пример DFD-диаграмм по нотации Гейна-Сарсона для предприятия, строящего свою деятельность по принципу " изготовление на заказ" приведен на рисунке 5.1. На основании полученных заказов формируется план выпуска продукции на определенный период. В соответствии с этим планом определяются потребность в комплектующих изделиях и материалах, а также график загрузки производственного оборудования. После изготовления продукции и проведения платежей, готовая продукция отправляется заказчику. Заказы подвергаются входному контролю и сортировке. Если заказ не отвечает номенклатуре товаров или оформлен неправильно, то он аннулируется с соответствующим уведомлением заказчика. Если заказ не аннулирован, то определяется, имеется ли на складе соответствующий товар. В случае положительного ответа выписывается счет к оплате и предъявляется заказчику, при поступлении платежа товар отправляется заказчику. Если заказ не обеспечен складскими запасами, то отправляется заявка на товар производителю. После поступления требуемого товара на склад компании заказ становится обеспеченным и повторяет вышеописанный маршрут. Рис.5.1. Пример DFD-диаграмм по нотации Гейна-Сарсона для предприятия Эта диаграмма представляет самый верхний уровень функциональной модели. Естественно, это весьма грубое описание предметной области. Уточнение модели производится путем детализации необходимых функций на DFD-диаграмме следующего уровня. Так мы можем разбить функцию " Определение потребностей и обеспечение материалами" на подфункции " Определение потребностей", " Поиск поставщиков", " Заключение и анализ договоров на поставку", " Контроль платежей", " Контроль поставок", связанные собственными потоками данных, которые будут представлены на отдельной диаграмме. Детализация модели должна производится до тех пор, пока она не будет содержать всю информацию, необходимую для построения информационной системы. К преимуществам методики DFD относятся: · возможность однозначно определить внешние сущности, анализируя потоки информации внутри и вне системы; · возможность проектирования сверху вниз, что облегчает построение модели " как должно быть"; · наличие спецификаций процессов нижнего уровня, что позволяет преодолеть логическую незавершенность функциональной модели и построить полную функциональную спецификацию разрабатываемой системы. К недостаткам модели отнесем: · необходимость искусственного ввода управляющих процессов, поскольку управляющие воздействия (потоки) и управляющие процессы с точки зрения DFD ничем не отличаются от обычных; · отсутствие понятия времени, т.е. отсутствие анализа временных промежутков при преобразовании данных (все ограничения по времени должны быть введены в спецификациях процессов).
Список литературы: 1. Андрейчиков А. В. Андрейчикова О. Н. Интелектуальные информационные системы Изд. «Финансы и статистика» г.Москва 2004г. 422с. 2. Анисимов Б.П., Котов В.В. «Современные методологии структурного анализа и проектирования систем обработки информации» журнал " Программные продукты и системы" № 2 за 1997 год.[ 24.06.1997 ] 3. Козленко Л. «Проектирование информационных систем. Часть 1. Этапы разработки проекта: стратегия и анализ» журнал КомпьютерПресс, 9'2001г. 4. Марка Д.А. МакГоуэк К. SADT-методология структурного анализа и проектирования изд. Метатехнология, М. 1993г. 5. Вендров А.М. CASE-технологии современные методы и средства проектирования и систем изд. Финансы и статистика М. 1998г. Интернет ресурсы: http: //www.aiportal.ru/ http: //www.itstan.ru/ http: //www.intuit.ru/ SADT-тенология Введение SADT (Structured Analysis and Design Technique) - одна из самых известных методологий анализа и проектирования систем, введенная в 1973 г. Россом (Ross). SADT успешно использовалась в военных, промышленных и коммерческих организациях для решения широкого спектра задач, таких как программное обеспечение телефонных сетей, системная поддержка и диагностика, долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, конфигурация компьютерных систем, обучение персонала, встроенное ПО для оборонных систем. управление финансами и материально-техническим снабжением и др. Данная методология широко поддерживается Министерством обороны США. которое было инициатором разработки стандарта IDEF0 как подмножества SADT. Это, наряду с растущей автоматизированной поддержкой, сделало ее более доступной и простой в употреблении. С точки зрения SADT модель может основываться либо на функциях системы, либо на ее предметах (планах, данных, оборудовании, информации и т.д.). Соответствующие модели принято называть активностными моделями и моделями данных. Активностная модель представляет с, нужной степенью подробности систему активностей, которые в свою очередь отражают свои взаимоотношения через предметы системы. Модели данных дуальны к активностным моделям и представляют собой подробное описание предметов системы, связанных системными активностями. Полная методология SADT заключается в построении моделей обеих типов для более точного описания сложной системы. Однако, в настоящее время широкое применение нашли только активностные модели, их рассмотрению и посвящен данный раздел. SADT-диаграммы Основным рабочим элементом при моделировании является диаграмма. Модель SADT объединяет и организует диаграммы в иерархические древовидные структуры, при этом чем выше уровень диаграммы, тем она менее детализирована. В состав диаграммы входят блоки, изображающие активности моделируемой системы, связывающие блоки вместе и изображающие взаимодействия и взаимосвязи между блоками. SADT требует, чтобы в диаграмме было 3-6 блоков: в этих пределах диаграммы и модели удобны для чтения, понимания и использования. Вместо одной громоздкой модели используются несколько небольших взаимосвязанных моделей, значения которых взаимодополняют друг друга, делая понятной структуризацию сложного объекта. Однако такое жесткое требование на число блоков на диаграмме ограничивает применение SADT для ряда предметных областей. Например, в банковских структурах имеется 15-20 равноправных деятельностей, которые целесообразно отразить на одной диаграмме. Искусственное их растаскивание по разным уровням SADT-модели явно не улучшает ее понимаемость. Структура блоков Блоки на диаграммах изображаются прямоугольниками и сопровождаются текстами на естественном языке, описывающими активности. В отличие от других методов структурного анализа в SADT каждая сторона имеет вполне определенное особое назначение: левая сторона блока предназначена для Входов, верхняя - для Управления, правая - для Выходов, нижняя - для Исполнителей, Такое обозначение отражает определенные принципы активности: Входы преобразуются в Выходы, Управления ограничивают или предписывают условия выполнения, Исполнители описывают, за счет чего выполняются преобразования. Дуги в SADT представляют наборы предметов и маркируются текстами на естественном языке. Предметы могут состоять с активностями в четырех возможных отношениях: Вход, Выход, Управление, Исполнитель. Каждое из этих отношений изображается дугой, связанной с определенной стороной блока - таким образом стороны блока чисто графически сортируют предметы, изображаемые дугами. Входные дуги изображают предметы, используемые и преобразуемые активностями. Управляющие дуги обычно изображают информацию, управляющую действиями активностей. Выходные дуги изображают предметы, в которые преобразуются входы. Исполнительские дуги отражают (по крайней мере частично) реализацию активностей. Рис.1. Блоки на диаграмме размещаются по " ступенчатой" схеме в соответствии с их доминированием, которое понимается как влияние, оказываемое одним блоком на другие. Кроме того, блоки должны быть пронумерованы, например, в соответствии с их доминированием. Номера блоков служат однозначными идентификаторами для активностей и автоматически организуют эти активности в иерархию модели. Взаимовлияние блоков может выражаться либо в пересылке Выхода к другой активности для дальнейшего преобразования, либо в выработке управляющей информации, предписывающей, что именно должна делать другая активность. Таким образом, диаграммы SADT являются предписывающими диаграммами, описывающими как преобразования между Входом и Выходом, так и предписывающие правила этих преобразований. Взаимосвязи В SADT требуются только пять типов взаимосвязей между блоками для описания их отношений: Управление, Вход, Управленческая Обратная Связь, Входная Обратная Связь, Выход - Исполнитель. Отношения Управления и Входа являются простейшими, поскольку они отражают интуитивно очевидные прямые воздействия. Отношение Управления возникает тогда, когда Выход одного блока непосредственно влияет на блок с меньшим доминированием. Отношение Входа возникает, когда Выход одного блока становится Входом для блока с меньшим доминированием. Обратные связи более сложны, поскольку они отражают итерацию или рекурсию - Выходы из одной активности влияют на будущее выполнение других функций, что впоследствии влияет на исходную активность. Управленческая Обратная Связь возникает, когда Выход некоторого блока влияет на блок с большим доминированием, а отношение Входной Обратной Связи имеет место, когда Выход одного блока становится Входом другого блока с большим доминированием. Отношения Выход - Исполнитель встречаются нечасто и представляют особый интерес. Они отражают ситуацию, при которой Выход одной активности становится средством достижения цели другой активностью. Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 21504; Нарушение авторского права страницы