Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Интеллектуальные информационно-поисковые системы



ИИПС взаимодействуют с проблемно-ориентированными (фактографическими) базами данных на естественном, точнее ограниченном как грамматически, так и лексически (профессиональной лексикой) естественном языке (языке деловой прозы). Для них характерно использование (помимо базы знаний, реализующей семантическую модель представления знаний о проблемной области) лингвистического процессора.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковый интерфейс используется для:

• доступа к интеллектуальным базам данных;

• контекстного поиска документальной текстовой информации;

• голосового ввода команд в системах управления;

• машинного перевода c иностранных языков.

Гипертекстовые системы

Данные системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические аудио и видео- образы.

 

Системы контекстной помощи

Их можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики

Данные системы позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.


Экспертные системы

 

Рассмотрим по подробнее экспертные системы, наиболее часто используемые в электронике. Экспертная система (ЭС) - это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области.

Общие сведения

Экспертные системы как самостоятельное направление в ис­кусственном интеллекте сформировалось в конце 1970-х гг. Исто­рия ЭС началась с сообщения японского комитета по разработке ЭВМ пятого поколения, в котором основное внимание уделялось развитию «интеллектуальных способностей» компьютеров с тем, чтобы они могли оперировать не только данными, но и знания­ми, как это делают специалисты (эксперты) при выработке умо­заключений. Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или при­нять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом.

Область исследования ЭС называют «инженерией знаний». Этот термин был введен Е. Фейгенбаумом и в его трактовке озна­чает «привнесение принципов и инструментария из области ис­кусственного интеллекта в решение трудных прикладных про­блем, требующих знаний экспертов». Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следу­ющих характеристик:

• задачи не могут быть представлены в числовой форме;

• исходные данные и знания о предметной области обладают
неоднозначностью, неточностью, противоречивостью;

• цели нельзя выразить с помощью четко определенной целе­вой функции;

• не существует однозначного алгоритмического решения
задачи;

• алгоритмическое решение существует, но его нельзя исполь­зовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в ка­честве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

ЭС охватывают самые разные предметные области (рис. 1.2), среди которых лидируют бизнес, производство, медицина, про­ектирование и системы управления/

3.3.2. Назначение экспертных систем

Роль ЭС заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

• консультанта для неопытных или непрофессиональных пользователей;

• ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;

• партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Во многих случаях ЭС являются инструментом, усиливаю­щим интеллектуальные способности эксперта. Кроме того, ЭС может выступать в роли:

• консультанта для неопытных или непрофессиональных
пользователей;

• ассистента эксперта-человека в процессах анализа вариан­тов решений;

 

 


• партнера эксперта в процессе решения задач, требующих
привлечения знаний из разных предметных областей.

Классификация ЭС

Для классификации ЭС используются следующие признаки:

• способ формирования решения;

• способ учета временного признака;

• вид используемых данных и знаний;

• число используемых источников знаний.

По способу формирования решения ЭС можно разделить на ана­лизирующие и синтезирующие. В системах первого типа осуще­ствляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синте­зируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС де­лят на статические и динамические. Статические ЭС предназ­начены для решения задач с неизменяемыми в процессе реше­ния данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детер­минированными и неопределенными знаниями. Под неопреде­ленностью знаний и данных понимаются их неполнота, ненадеж­ность, нечеткость.

ЭС могут создаваться с использованием одного или несколь­ких источников знаний.

В соответствии с перечисленными признаками можно выде­лить четыре основных класса ЭС (рис. 1.3): классифицирующие, доопределяющие, трансформирующие и мультиагентные.

Классифицирующие ЭС решают задачи распознавания ситуа­ций. Основным методом формирования решений в таких систе­мах является дедуктивный логический вывод.

Доопределяющие ЭС используются для решения задач с не полностью определенными данными и знаниями. В таких ЭС возникают задачи интерпретации нечетких знаний и выбора аль­тернативных направлений поиска в пространстве возможных ре­шений. В качестве методов обработки неопределенных знаний могут использоваться байесовский вероятностный подход, коэф­фициенты уверенности, нечеткая логика.

Трансформирующие ЭС относятся к синтезирующим динами­ческим экспертным системам, в которых предполагается повто­ряющееся преобразование знаний в процессе решения задач. В ЭС данного класса используются различные способы обработки знаний:

• генерация и проверка гипотез;

• логика предположений и умолчаний (когда по неполным
данным формируются представления об объектах определенного
класса, которые впоследствии адаптируются к конкретным усло­
виям изменяющихся ситуаций);

• использование метазнаний (более общих закономерностей)
для устранения неопределенностей в ситуациях.

Мультиагентные системы - это динамические ЭС, основан­ные на интеграции нескольких разнородных источников знаний. Эти источники обмениваются между собой получаемыми резуль­татами в ходе решения задач. Системы данного класса имеют сле­дующие возможности:

• реализация альтернативных рассуждений на основе исполь­
зования различных источников знаний и механизма устранения
противоречий;

• распределенное решение проблем, декомпозируемых на па­раллельно решаемые подзадачи с самостоятельными источника­
ми знаний;

• применение различных стратегий вывода заключений в за­висимости от типа решаемой проблемы;

• обработка больших массивов информации из баз данных;

• использование математических моделей и внешних про­цедур для имитации развития ситуаций.

По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы - генерацию неизвестных решений (формирование объектов).

По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).

В соответствии с перечисленными признаками классификации, как правило, выделяются следующие четыре основные класса экспертных систем (рис. 2.1).

Классы экспертных систем

Рис. 2.1

Классифицирующие экспертные системы. К аналитическим задачам прежде всего относятся задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям.

Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода от общего к частному, когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение.

Доопределяющие экспертные системы. Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна как бы доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения. В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика. Доопределяющие экспертные системы могут использовать для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д.

Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:

• Интерпретация данных - выбор решения из фиксированного множества альтернатив на базе введенной информации о текущей ситуации. Основное назначение - определение сущности рассматриваемой ситуации, выбор гипотез, исходя их фактов.

• Диагностика - выявление причин, приведших к возникновению ситуации.

• Коррекция - диагностика, дополненная возможностью оценки и рекомендации действий по исправлению отклонений от нормального состояния рассматриваемых ситуаций.

Трансформирующие экспертные системы. В отличие от аналитических статических экспертных систем синтезирующие динамические экспертные системы предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области.

Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе. Для многоагентных систем характерны следующие особенности:

• Проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;

• Распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;

• Применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;

• Обработка больших массивов данных, содержащихся в базе данных;

• Использование различных математических моделей и внешних процедур, хранимых в базе моделей;

• Способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.

Для синтезирующих динамических экспертных систем наиболее

применимы следующие проблемные области:

• Проектирование - определение конфигурации объектов с точки зрения достижения заданных критериев эффективности и ограничений.

• Прогнозирование - предсказание последствий развития текущих ситуаций на основе математического и эвристического моделирования.

• Диспетчирование - распределение работ во времени, составление расписаний.

• Планирование - выбор последовательности действий пользователей по достижению поставленной цели.

• Мониторинг - слежение за текущей ситуацией с возможной последующей коррекцией. Для этого выполняется диагностика, прогнозирование, а в случае необходимости планирование и коррекция действий пользователей.

• Управление - мониторинг, дополненный реализацией действий в автоматических системах.

.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 3024; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.042 с.)
Главная | Случайная страница | Обратная связь