Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


В процессе проведения выборочного наблюдения, как и вообще при анализе данных любого обследования, статистика выделяет два вида ошибок: регистрации и репрезентативности.



Ошибки регистрации могут иметь случайный (непреднамеренный) или систематический (тенденциозный) характер. Их можно избежать при правильной организации и проведении наблюдения.

 

Ошибки репрезентативности органически присущи выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную.

Избежать ошибок репрезентативности нельзя, однако, пользуясь методами теории вероятностей, основанными на использовании предельных теорем закона больших чисел, эти ошибки можно свести к минимальным значениям, границы которых устанавливаются с достаточно большой точностью;

Ошибка выборочного наблюдения - это разность между величиной параметра в генеральной совокупности и его величиной, вычисленной по результатам выборочного наблюдения.

Для среднего значения ошибка будет определяться так:

, где , . (1.1)

Величина называется предельной ошибкой выборки.

Предельная ошибка выборки величина случайная. Исследованию закономерностей случайных ошибок выборки посвящены предельные теоремы закона больших чисел.

Наиболее полно эти закономерности раскрыты в теоремах Л.Л. Чебышева и А.М. Ляпунова.

Теорема П. Л. Чебышева: при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице (т.е. почти с достоверностью), утверждать, что отклонение выборочной средней от генеральной будет сколько угодно малым.

В теореме доказано, что величина ошибки не должна превышать .

В свою очередь, величина , выражающая среднее квадратическое отклонение выборочной средней от генеральной средней, зависит от колеблемости признака в генеральной совокупности и числа отобранных единиц .

Эта зависимость выражается формулой

, (1.2)

где - средняя ошибка выборки (зависит и от способа производства выборки);

- генеральная дисперсия;

- объем выборочной совокупности.

Нетрудно убедиться, что при отборе большого числа единиц расхождения между средними будут меньше, т.е. существует обратная связь между, средней ошибкой выборки и числом отобранных единиц.

Можно доказать, что увеличение колеблемости признака влечет за собой увеличение среднего квадратического отклонения, а, следовательно, и ошибки.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

. (1.3)

Так как величина при достаточно больших близка к , можно приближенно считать, что выборочная дисперсия равна генеральной дисперсии, т.е. .

Следовательно, средняя ошибка выборки показывает, какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью. На величину вероятности указывает множитель .

А. М. Ляпунов доказал, что распределение выборочных средних (а, следовательно, и их отклонений от генеральной средней) при достаточно большом числе независимых наблюдений приближенно нормально при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически теорему Ляпунова можно записать так:

, (1.4)

где - предельная ошибка выборки.

Значения этого интеграла для различных значений коэффициента доверия вычислены и приводятся в специальных математических таблицах.

Например:

t = 1 F (t) = 0.683; t = 1.5 F (t) = 0.866;

t = 2 F (t) = 0.954; t = 2.5 F (t) = 0.988;

t = 3 F (t) = 0.997; t = 3.5 F (t) = 0.999.

Это может быть прочитано так: с вероятностью можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки.

Другими словами, в случаев ошибка репрезентативности не выйдет за пределы и т.д.

Зная выборочную среднюю величину признака и предельную ошибку выборки , можно определить границы (пределы), в которых заключена генеральная средняя:

или .

Теорема Бернулли рассматривает ошибку выборки для альтернативного признака, у которого возможны только два исхода: наличие признака ( ) и отсутствие его (0).

Теорема Бернулли утверждает, что при достаточно большом объеме выборки вероятность расхождения между долей признака в выборочной совокупности ( ) и долей признака в генеральной совокупности ( ) будет стремиться к единице:

,

т.е. с вероятностью, сколько угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки частость признака (выборочная доля) сколько угодно мало будет отличаться от доли признака (в генеральной совокупности).

Ввиду того, что вероятность расхождения между частостью и долей следует закону нормального распределения, эту вероятность можно найти по функции в зависимости от задаваемой величины .

Средняя ошибка выборки для альтернативного признака определяется по формуле

, где . (1.5)

Поскольку доля признака в выборочной совокупности неизвестна, ее необходимо заменить через долю того же признака в генеральной совокупности, т.е. принять , а дисперсию альтернативного признака принять за .

Тогда средняя, ошибка выборки выразится формулой

. (1.6)

Предельная величина разности между частостью и долей называется предельной ошибкой выборки.

О величине предельной ошибки можно судить с некоторой вероятностью, которая зависит от множителя , поскольку .

Зная выборочную долю признака и предельную ошибку выборки , можно определить границы, в которых заключена генеральная доля :

.

Результаты выборочного статистического исследования во многом зависят от уровня подготовки процесса наблюдения.

Под уровнем подготовки в данном случае подразумевается соблюдение определенных правил и принципов проектирования выборочного обследования. Важнейшим элементом проектирования является составление организационного плана выборочного наблюдения.

В организационный план включаются следующие вопросы:

1. Постановка цели и задачи наблюдения.

2. Определение границ объекта исследования.

3. Отработка программы наблюдения (составление анкеты, опросного листа, формы отчета и т.д.) и разработка ее материалов.

4. Определение процедуры отбора, способа отбора и объема выборки.

5. Подготовка кадров для проведения наблюдения, размножение формуляров, инструктивных документов и др.

6. Расчет выборочных характеристик и определение ошибок выборки.

7. Распространение выборочных данных на всю совокупность.


Поделиться:



Популярное:

  1. A. Притяжения и отталкивания, силы отталкивания больше на малых расстояниях, чем силы притяжения. Б. Притяжения и отталкивания, силы отталкивания меньше на малых расстояниях, чем силы притяжения.
  2. Adjective and adverb. Имя прилагательное и наречие. Степени сравнения.
  3. CОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СТАТИСТИКА
  4. D. Правоспособность иностранцев. - Ограничения в отношении землевладения. - Двоякий смысл своего и чужого в немецкой терминологии. - Приобретение прав гражданства русскими подданными в Финляндии
  5. D. ПРЕИМУЩЕСТВА ПРИСОЕДИНЕНИЯ К ГААГСКОМУ СОГЛАШЕНИЮ
  6. DFD - диаграмма потоков данных
  7. ER-модель и ее отображение на схему данных
  8. F70.99 Умственная отсталость легкой степени без указаний на нарушение поведения, обусловленная неуточненными причинами
  9. F71.98 Умственная отсталость умеренная без указаний на нарушение поведения, обусловленная другими уточненными причинами
  10. I Использование заемных средств в работе предприятия
  11. I. Методические принципы физического воспитания (сознательность, активность, наглядность, доступность, систематичность)
  12. I. О НОВОПРИБЫВШИХ ГРАЖДАНАХ.


Последнее изменение этой страницы: 2016-03-17; Просмотров: 1616; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь