Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тепловых машин, и проблема энергосбережения.
В своей жизни вы постоянно встречаетесь с разнообразными двигателями. Они приводят в движение автомобили и самолеты, трактора, корабли и железнодорожные локомотивы. Электрический ток вырабатывается преимущественно с помощью тепловых машин. Именно появление и развитие тепловых машин создало возможность для быстрого развития промышленности в XVIII—XX вв. Работа тепловых машин связана с использованием ископаемого топлива. Современное мировое сообщество использует энергетические ресурсы в громадных масштабах. Например, за 1979 г. энергопотребление составило примерно 3 • 1017 кДж. Все тепловые потери в различных тепловых двигателях приводят к повышению внутренней энергии окружающих тел и в конечном счете атмосферы. Казалось бы, что выработка 3 • 1017 кДж энергии в год, отнесенная к площади освоенной человеком суши (8, 5 млрд га), даст ничтожную величину 0, 11 Вт/м2 по сравнению с поступлением лучистой энергии Солнца на земную поверхность: 1, 36 кВт/м2. Однако при повышении ежегодного использования первичных энергоресурсов всего в 100 раз средняя температура на Земле повысится примерно на 1°С. Дальнейшее повышение температуры может привести к интенсивному таянию ледников и катастрофическому повышению уровня Мирового океана, к изменению природных комплексов, что существенно изменит условия жизни человека на планете. Но темпы роста энергопотребления увеличиваются, и сейчас создалось такое положение, что до увеличения температуры атмосферы потребуется всего несколько десятков лет. Однако человечество не может отказаться от использования машин в своей деятельности. Чтобы произвести одну и ту же необходимую работу, следует повысить КПД двигателя, что позволит расходовать меньше топлива, т. е. позволит не увеличивать энергопотребление. Бороться с негативными последствиями применения тепловых машин можно только путем увеличения эффективности использования энергии, путем ее экономии. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей, самолетов и других машин выбрасывают в атмосферу вредные для человека, животных и растений вещества, например сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (угарный газ СО), хлор и т. д. Эти вещества попадают в атмосферу, а из нее — в различные части ландшафта. Особую опасность в увеличении вредных выбросов в атмосферу представляют двигатели внутреннего сгорания, установленные на автомобилях, самолетах, ракетах. Применение паровых турбин на электростанциях требует много воды и больших площадей, занимаемых под пруды для охлаждения отработанного пара. Из-за большого энергопотребления в ряде регионов планеты возможность самоочищения их воздушных бассейнов оказалась уже исчерпанной. Необходимость значительно снизить выброс загрязняющих веществ привела к использованию новых видов топлива, в частности к строительству атомных электростанций (АЭС). Но на атомных электростанциях встают другие проблемы: захоронение опасных радиоактивных отходов, а также проблема безопасности. Это показала катастрофа на Чернобыльской АЭС. При решении экологических проблем, связанных с использованием тепловых машин, важнейшую роль должны играть постоянная экономия всех видов энергии, переход на энергосберегающие технологии. Человек долго использовал двигатель внутреннего сгорания, не подозревая о его отрицательном воздействии на человека, животных, растения. Лишь в последнее время это отрицательное воздействие заметили и начали с ним бороться. Основными загрязнителями атмосферы являются автомашины, особенно грузовики. Количество и концентрация вредных веществ в выхлопах зависят от вида и качества топлива. В основном это углекислый и угарный газы, оксиды азота, гексен, пентен, кадмий, сернистый ангидрид, свинец, хлор и некоторые его соединения. Эти вещества отрицательно воздействуют на человека, животных, растения и вызывают глобальные изменения в биосфере. Теперь конкретно рассмотрим их воздействие. Углекислый и угарный газы, оксиды серы, оксиды азота являются парниковыми газами, т. е. вызывают парниковый эффект, выражающийся в повышении температуры у поверхности Земли. Его механизм заключается в образовании атмосферной оболочки, которая отражает тепловые лучи, исходящие от Земли, не давая им уходить в космическое пространство. Это может привести к таянию льда в полярных областях и как следствие – к повышению уровня Мирового океана. Но надо сказать, что тепловой эффект почти компенсируется ледниковым эффектом. Последний вызывается слоем пылевых частиц, которые отражают тепловые лучи, идущие от Солнца, обратно в космос. Оксиды серы с водой образуют серную кислоту, а оксид азота – азотную и азотистую кислоты. У человека они вызывают поражения кожи, обструктивный рахит, отёк лёгких. У животных также наблюдаются нарушения жизнедеятельности и даже гибель. Кадмий отрицательно воздействует на костную и половую системы, зубы. Свинец вызывает у грудных детей нарушения в ЦНС, костной системе, слуха, зрения. Один легковой автомобиль ежегодно поглощает из атмосферы больше 4 т кислорода, выбрасывает с выхлопными газами около 800 кг СО и различных углеводородов. Оксид углерода, соединяясь с гемоглобином крови, мешает нести кислород в ткани организма. Оксиды азота играют большую роль в образовании продуктов превращения углеводородов в атмосферном воздухе. Из-за неполного сгорания топлива в двигателе машины часть углеводородов превращается в сажу. Свинец – один из основных загрязнителей внешней среды.
Тема 5. Электромагнитные явления (4 часа) 1. Электрическое поле Электрический заряд — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году. Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга. При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо. При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо. Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела. Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца). Свойство вещества проводить электрический ток под действием электрического поля называется электропроводностью. Электропроводность вещества зависит от концентрации носителей заряда: чем выше концентрация, тем больше электропроводность. Все вещества в зависимости от электропроводности делятся на проводники, диэлектрики и полупроводники. Проводник— тело, в котором имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества, при нормальных условиях являющиеся изоляторами, при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п. Проводниками также называют части электрических цепей — соединительные провода и шины. Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде. Проводники бывают первого и второго рода. В проводниках первого рода, к которым преимущественно относятся все металлы и их сплавы, электрический ток создается перемещением только электронов — это проводники с электронной проводимостью. Прохождение тока в них не сопровождается химическими изменениями материала проводника. Лучшими проводниками являются серебро, медь, алюминий. Проводники второго рода, или проводники с ионной проводимостью, представляют собой расплавы некоторых солей и водные растворы кислот, солей, щелочей и др. В расплавах и растворах независимо от прохождения тока происходит распад их нейтральных молекул на положительные и отрицательные ионы (электролитическая диссоциация). Диэлектриками (изоляторами) называются вещества (материалы), в которых при нормальных условиях (невысокие температуры и отсутствие сильных электрических полей) имеется ничтожное количество свободных электрически заряженных частиц; вследствие этого они обладают ничтожной электропроводностью, которой во многих случаях можно пренебречь. К числу изоляторов относятся некоторые газы и жидкости — минеральные масла, лаки, а также большое число твердых материалов, за исключением металлов, их сплавов и угля. Однако при некоторых условиях, например при действии высоких температур или сильных электрических полей, в диэлектриках возможны расщепление молекул на ионы и потеря ими изолирующих свойств. Полупроводники (полупроводящие вещества или материалы) по своей электропроводности занимают промежуточное место между проводниками и изоляторами. К полупроводникам относятся кремний, германий, теллур, селен, окислы металлов, соединения металлов с серой и т. д. Полупроводники обладают рядом характерных свойств, электропроводность их и концентрация свободных носителей заряда в сильной степени зависят от температуры, освещенности, электрических полей, примесей и др. Отличительные особенности полупроводников объясняются тем, что кроме электронной электропроводности, вызываемой электронами проводимости, они обладают еще так называемой дырочной электропроводностью. Последняя вызвана перемещением под действием электрического поля «дырок», т. е. не занятых валентными электронами мест в атомах (из-за перемещения от атома к атому валентных электронов), что равноценно перемещению положительно заряженных частиц, заряды которых по абсолютному значению равны зарядам электронов. 2. Постоянный и переменный электрический ток Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил. За направление тока выбрано направление движения положительно заряженных частиц. Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Основной характеристикой электрического тока является сила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δ q/Δ t или для мгновенной силы тока: I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов. Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S. Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R. Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D). При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению. Мощность измеряется в ваттах. Переменный ток (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению. Переменный ток имеет большие преимущества перед постоянным током. Генераторы переменного тока проще по устройству, надежнее в работе и строятся гораздо большей мощности и на большее напряжение, чем генераторы постоянного тока. Но главное преимущество переменного тока состоит в том, что его легко можно преобразовывать из одного напряжения в другое при помощи трансформаторов, которые не имеют вращающихся частей и поэтому проще машин. Для получения переменного тока используют источники электрической энергии, создающие переменную электродинамическую систему, периодически изменяющуюся по величине и направлению; такие источники называются генераторами переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле. Для передачи тока на большие расстояния в начале линии его преобразуют в ток высокого напряжения в несколько сотен тысяч вольт, а в конце снова понижают до тысяч и сотен вольт. При одной и той же мощности при повышении напряжения во столько же раз понижается сила тока, что дает возможность передавать большие мощности по относительно тонким проводам с небольшими потерями энергии. Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксии. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти. Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь. До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток.
Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 2162; Нарушение авторского права страницы